Assignment 4.

February 15.

Objective: See it with your own eyes.

1. Write a procedure that simulates a random walk with parameters \(x = X(0), L, a, b, \) and \(c \). One call to this procedure should produce one path and report \(\tau \) and \(X(\tau) \), which can be 0 or \(L \). If you have a uniform random number generator \(U = \text{rand()} \), you can simulate a random walk by: \(x \rightarrow x - 1 \) if \(U \leq c \), \(x \rightarrow x \) if \(c \leq U \leq c + b \), and \(x \rightarrow x + 1 \) otherwise. You can estimate the probability that \(X(\tau) = 0 \) by doing \(N \) simulations, letting \(M \) be the number of simulations with \(X(\tau) = 0 \) and using \(M/N \) as the estimate of the probability. In the same way, you can estimate \(E[\tau] \) by averaging the \(\tau \) values from \(N \) simulations.

 (a) Let \(w(x) = P(X(\tau) = 0 \mid X(0) = x) \). With \(L = 20 \), \(a = b = c = \frac{1}{3} \), estimate the numbers \(w(x) \) for each \(x \in [1, L - 1] \). Plot the estimates and the theoretical value on the same plot. Use an \(N \) value that is big enough to give good agreement.

 (b) Repeat part (a) with \(L = 20 \), \(a = \frac{1}{2} \), and \(b = c = \frac{1}{4} \). You will have to complete the theoretical calculation of \(w(x) \) in the notes. Comment on the difference in the shapes of the curves here and in part (a).

 (c) Estimate \(f(x) = E[\tau \mid X(0) = x] \) with \(L = 50 \), and \(a = b = c = \frac{1}{3} \). Plot the estimates and the theoretical values on the same plot.

 (d) Repeat part (c) with \(a = \frac{1}{2} \), and \(b = c = \frac{1}{4} \). Can you explain the rough shape of the result using the idea of drift as a constant speed? Compare the size of \(f \) here and in part (c). Which is larger and why?

2. Write a program to solve the forward equation for a random walk. Use absorbing boundary conditions at \(k = 0 \) and \(k = L \). Take \(L = 200 \). Take \(a = b = c = \frac{1}{3} \). Start with initial conditions \(u_0(k) \) and solve the forward equation up to time \(T = 1000 \). Take \(u_0(k) \) corresponding to \(X(0) = 100 \).

 (a) Compute and plot \(H(t) = 1 - \sum_{k=1}^{L} u(k, t) \). This is the probability of hitting the boundary before time \(t \). How likely is this with the present parameters? Note that the random walk takes about \(\frac{2}{3}T = 667 \) jumps (two thirds of the time steps involve \(X \rightarrow X + 1 \) or \(X \rightarrow X - 1 \)), and it takes 100 jumps to get from the starting point to the boundary.

 (b) Make a plot of \(u(k, T) \) as a function of \(k \). How likely is it for \(X(T) \) to be close to the boundary?

1This is how it looks in C/C++. It is slightly different in Matlab or VBA or R.
(c) With the same initial condition as part (a), compute and plot

\[S(t) = \sum_{k=1}^{L} (u(k, t) - u(k - 1, t))^2. \]

If you feel ambitious, look for a power law \(S(t) \approx C \cdot t^{-p} \) (for large \(t \)), possibly by plotting \(\log S \).

(d) Compute \(R(t) = \sum_{t'<t} S(t') \) and plot this to see that \(\lim_{t \to \infty} R(t) = \sum_{t=0}^{\infty} S(t) \) exists and is finite. If you estimated a power law in part (c), this will be consistent.

You may program in any language you want. Below is what some of the code might look like in C/C++. If you program in Matlab, remember that arrays start with index 1, not index 0. What is called \(u[k] \) in C/C++ would be called \(u(k+1) \) in Matlab. The trick for absorbing boundary conditions \(u(0, t) = u(L, t) = 0 \) is to set \(u(0) = u(L) = 0 \) at the beginning and never change these values. The loops run from \(k = 1 \) to \(k = L - 1 \) \((k = 2 \text{ to } k = L \text{ in Matlab}) \) to avoid changing \(u(0) \) or \(u(L) \). Also, we use two one dimensional arrays \(u \) and \(uNew \) instead of a two dimensional array \(u \). This uses much less computer memory. In C/C++, the main loop could be

```c
double u[L+1], uNew[L+1];

// create initial conditions
u[0] = 0; uNew[0] = 0; u[L] = 0; uNew[L] = 0; // Boundary values never change
for ( t = 0; t < T; t++ ) { // The time step loop
    for ( k = 1; k < L-1; k++ ) // Compute the new u values.
        uNew[k] = a*u[k-1] + b*u[k] + c*u[k+1];
    for ( k = 1; k < L-1; k++ ) // Copy them back to the old array.
        u[k] = uNew[k];
}
```