Stochastic Calculus Notes, Lecture 8
Last modified November 21, 2002

1 Multidimensional diffusions
1.1.  the Area integral: Suppose

2 Girsanov’s theorem

Girsanov’s theorem relates solutions of Ito differential equations with different
drifts. It is also an example of an interesting possibility in probability, comput-
ing the expected value of one random variable by using a random variable with
a different probability measure. In Monte Carlo, this is called “importance sam-
pling”, and is used to in making accurate estimates of very small probabilities.

2.1. Probability densities and Lebesgue measure: For Brownian motion,
we gave a probability measure but not a probability density. For a simple
gaussian random variable X ~ AN(0,1) we instead give a probability density,
u(z) = V1 2me=*"/2. This is possible because there already is a measure on
the probability space {1 = R, Lebesgue measure. When we write E[V(X)] =
J V(x)u(z)dz, the dx refers to integration with respect to Lebesgue measure,
Wthh is umforrn measure”, A((a,b)) = b—a (here A\(A) is the Lebesgue measure
of A, applied to A = (a,b)). It is also possible to define the “standard normal
probability measure”, P. This is P(A) = [, u(x)dz. We then have E[V(X)] =
[z V R ) In abstract probablhty we descrlbe this situation by saying that
the gausslan measure P (possibly written dP) is “absolutely continuous” with
respect to Lebesgue measure, A (possibly written dz). The function u(z) is the
density of dP with respect to dz, sometimes written u(z) = ‘“: . The formal
ratio dP is also called the “Radon Nikodym derivative” of the gaussian measure
dP Wlth respect to Lebesgue measure dz.

2.2, The Radon Nikodym derivative: A more abstract version of this sit-
uation is that there is a probability space €2, a o—algebra of sets F, and two
measures dP(w), and dQ(w). We will suppose that both are probability mea-
sures, though this is not necessary; d@) was Lebesgue measure in the previous
paragraph. We say that L(w) is the Radon Nikodym derivative of dP with

respect to d@Q and write L(w) = ZSEZ; if P(A) = [ .4 L(w)dQ(w). We use L
here and below (instead of u as above), because the Radon Nikodym derivative
is closely related to what statisticians call the “likelihood ratio”. The definition

of L is the same as saying that for any function, V' (w),

o= [ V@)P@) = | V)DQw) = BolV @] . ()



Following an earlier custom, we write Ep|-] for expectation with respect to the
probability measure P.

2.3. Radon Nikodym derivative as likelihood ratio: If Xy and X; are
two random variables with densities ug(x) and uq(z), then they have proba-
bility measures dP(x) = ug(z)dz and dQ(z) = uj(x)dx respectively. Therefore,
L(z) = dP(z)/dQ(x) = uo(x)dz/ui (x)dx = ug(x)/ui(x). The Radon Nikodym
derivative is the ratio of the probability densities. Statisticians often call prob-
ability densities “likelihoods”, particularly when thinking of them as a function
of some parameter (the mean, variance, etc.). The ratio of probability densities
becomes the “likelihood ratio”, L. Though our canceling dx from the numerator
and denominator is not rigorous, the formula L = ug/u, is easy to check in the
integral definition (1), as in the following example.

2.4. Example of one dimensional gaussians; Suppose the measure P corre-
sponds to a standard normal, ug(z) = \/%e_”” /2, and Q to a N(u, 1) random
variable, u,(x) = \/%76_(3:_”)2/2 . The Radon Nikodym derivative dP/dQ is

given by L(z) = uo(x)/u,u(x) = e~H+1*/2 We can verify this by checking,
using the standard gaussian integration formulas for expectation values, that

FolV(X)] = \/%—ﬁ /R V(@)e"2dz

v n@)e gy
= [ VoL@ d
EuV(X)L(X)].

2.5. Absolutely continuous measures: It might seem that it is easy to
calculate the Radon Nikodym derivative, and it generally is, provided it exists.
Given probability measures P and ) on the same space, ), with the same
measureable sets, F, there might be an event, A, that has probability zero in
the () probability but positive P probability. In that case, it is impossible to
have

mm=Aummwu

because the left side must be zero if Q(A) = 0. The Radon Nikodym theorem
says that this is the only thing that can go wrong.

Theorem: If Q(A) = 0 implies P(A) = 0 for every measurable event, A, then
there is a Radon Nikodym derivative, L(w), that represents P in terms of Q.

2.6. Examples in finite dimensions: These illustrate the possibility that one
measure may not be absolutely continuous with respect to another, but they
do not give much intuition about the subtlty of absolute continuity applied to
diffusions. As one example, consider two one dimensional random variables,
the standard exponential and the standard normal. The exponential random



variable has probability density ui(x) = 0 if < 0 and u(z) = e™* for z > 0.
The standard normal has density ug(z) as above. The event A = {“2 < 0"} =
(—00,0) has @ probability (standard normal probability) Q(A) = .5 but P
probability P(A) = 0, since the exponential random variable is never negative.
In this situation we say that the gaussian measure is not absolutely continuous
with respect to the exponential measure. On the other hand, the exponential
measure is absolutely continuous with respect to gausian measure: an event
whose gaussian probability is zero also has exponential probability zero.

As another example, suppose we choose the random variable X by first
tossing a “fair” coin. If the toss is H (probability p), we set X = 0. If the
toss is T' (probability ¢ = 1 — p), we make X to be a standard normal. The
probability density for the resulting random variable is

u(z) = pd(x) + fracl — pV2me /2

This density is a “mixture” of the delta function and the standard normal den-
sity. It is not absolutely continuous with respect to the “pure” standard normal
measure because the event X = 0 has probability p > 0 for u but probability
zero for the standard normal alone. Here, the lack of absolute continuity is
caused by a concentration of probability rather than the density being zero in
a large region (z < 0 above).

2.7.  Cantor measure: This shows that it is possible to concentrate probabil-
ity in a set of Lebesgue measure zero without concentrating it at a point as in
the delta measure. The Cantor measure (after Georg Cantor, a late ninteenth
century German mathematician) is defined on the interval 0 < x < 1 by throw-
ing out all the “middle thirds” and concentrating the measure on what remains,
which is called the Cantor set, C. To determine whether an = € [0,1] is in C,
we give it’s representation base 3: x = 0.ajasas - - -, where each ay is one of the

numbers 0, 1, or 2, and
(oo}
T = 223_]%1;€ .
k=1

The ordinary decimal representation is the same thing with 3 replaced by 10.
For example,

1 1
- =0.020202- - - =.012012--- .
1 0.02020 B 0120

The Cantor set is the set of numbers that have aj, # 1 for all k. The condition
a1 # 1 rules out all numbers z € (3,23), the middle third of (0,1). The middle
thirds of the first third and third third are ruled out by the condition as # 0;
numbers of the form 0.01las, a4 - - - form the interval (é, %), which is the middle
third of the first third, and numbers of the form 0.21as, a4 - - - form the interval
(Z, %), which is the middle third of the third third.

With respect to uniform measure (Lebesgue measure) in the unit interval,
the Cantor set has probability zero. The probability that x will be thrown out

1

because a; = 1is 3. If x is spared (probability %), it is thrown out because



az = 1 again with probability % The probability of being spared k times is

%k — 0 as k — oco. To be in C, x must be spared infinitely many times, an
event of Lebesgue measure zero.

To define the Cantor measure, we need to give Po(A) for any A C C.
For each € A we define a y € (0,1) by giving the base 2 binary expansion

y = 0.b1,b2,b3- -, where by =0 if ay = 0 and by = 1 if ax = 2. That is

y= Z 27%  where T'(z) = {k | ar = 2} .
k€T (x)

The set of all such y coming from an = € A is called B. The Cantor measure
of A will be the ordinary Lebesgue (unifrom) measure of B. If A C [0,1], we
define Po(A) = Po(ANC). We can think of the Cantor measure as coming from
an infinite sequence of cut and squeeze steps. First we cut the unit interval in
the middle and squeeze the first half into the first third and the second half to
the third third. This gives the first and third thirds probability % each and the
middle third probability zero. We then cut and squeeze out the middle third of
the first and third thirds, giving each of the 4 remaining ninths measure %, and
SO on.

The Cantor set and Cantor measure provide illustrate some things that can
go wrong in measure theory. . . .

2.8. Alternative descriptions of a random variable: It often happens that
we can describe a random X € S either as a random variable in its own right
by giving a probability measure, @), on S, or as a function of another random
variable w € Q with measure P. If we have a function V(z) and we want
the expected value, E[V(X)], we may calculate it either as [¢ V(2)dQ(z) or as
Jo V(X (w)dP(w). Of course, the function X (w) and the measure P determine
the measure ). Nevertheless, we sometimes can make use of a direct description
of @ without reference to P and 2. Girsanov’s theorem is about the measure
in path space defined by the solution of a stochastic differential equation. In
this case, € is the space of Brownian motion paths and X (W) is the solution of
the SDE for Brownian motion path W, which plays the role of w here. To state
Girsanov’s theorem, we have to be able to understand the X measure without
reference to the underlying W.

2.9. A one dimensional mapping example: Suppose = (0,1] and P is
uniform measure, leaving out the point zero for simplicity. For each w € (0,1]
we define X (w) = — In(w) (In(w) is the log base e). This is a 1—1 transformation;
there is a unique X > 0 for each w € (0, 1], and vice versa. If V(z) = 2%, we
could evaluate F[V(X)] as the integral fol In(w)?dw.

The other way is to find the PDF for X directly. Since X > 0, this density
is zero for x < 0. We call it u(x) and find it from the relation

u(z)de = Pz <X <z+dx)
= Pz < —In(w) <z +dx)



= P(—z—dz<ln(w)< -z)
= Pl e ™ <w<e™)
= Ple¥—dre " <w<e™)

= dzxe ".

The last line is because w is uniformly distributed in (0, 1] so the probability of
being in any interval (a, b) is b—a, here with a = e™* —dxe™™ and b = e~*. The
conclusion is that u(z) = e™*, which is to say that X is a standard exponential
random variable. Now we can calulate the same expected value as

o0 1
E[X?] :/ e dx :/ In(w)?dw .
=0 w=0
The P measure is uniform measure on (0,1]. The @ measure is standard expo-
nential measure. The mapping is X (w) = — In(w).

2.10. Distinguishing random variables: Suppose we have probability mea-
sures P and ) on the same space, S. A “sample” will be a random variable
X € § with either the P or @) probability measures. One of the main questions
in statistics is finding statistical tests to determine whether X was drawn from
the P or Q populations, i.e., which of P or @ describes X. A “hypothesis test”
is a decomposition of S into two sets, here called Ap and Ag (Ap and Ag dis-
joint, Ap U Ag = §). The hypothesis test based on this decomposition reports
X~Pif X € Apand X ~ Q if X € Ag. Generally speaking, in statistics your
hypothesis test conclusions are not certain, but hold with a certain (hopefully
high) likelihood.

Suppose there is an event A C S so that P(4) > 0 but Q(A) = 0. If we
use this set for the hypothesis test, (taking Ap = A and Ag = S — A), then
whenever our hypothesis test reports P, it must be correct. In statisticians’
language, there is a hypothesis test with zero type II error. This shows that
the possibility of an (in some respectes) infallable hypothesis test is equivalent
to absolute continuity or lack of absolute continuity of measures. If there is
a procedure that sometimes knows with 100% certainty that X was drawn
from @ rather than P, then @ is not absolutely continuous with respect to
P. For example, suppose S = R, @ is the standard normal measure, P is the
exponential, and A = (—00,0). If X € A we know X came from the gaussian
measure because the exponential probability of A is zero.

If measure (Q is not absolutely continuous with respect to measure P, it is
common that the two measures are “completely singular” with respect to each
other. This means that there is a partition with P(Ap) = Q(4g) = 1, and
therefore Q(Ap) = 0 = P(Ag). If measures P and () are completely singular
then there is a hypothesis test that is right 100% of the time. For example, if
P is the standard normal measure and @) = § is a delta measure corresponding
to X = 0 with probability 1, then we take Ap to be all real numbers except
zero and Ag = {0}. The hypothesis test is to say “normal” if X # 0 and “”
if X = 0. If the only choices are standard normal or delta, you can never be
wrong doing this.



2.11. Absolute continuity of diffusion measures: It is possible to distin-
guish diffusions with different o in this way. The main fact is that (X), =

fOT o(X¢,t)%dt. If we know everything about the path, we will be able to com-
pute (At =T /n, ti, = kEAL):

n—1

(X)g = Jim 3= (X, — Xn)” @)
Suppose we are trying to guess whether X satisfies dX = ao (X3, t)dt+oo(X¢, t)dWs
or dX = a1 (X, t)dt+01(Xe, t)dW;. We compute the quadratic variation for our
path X; (2) and see whether it is equal to fOT oo(X¢,t)dt or fOT o1 ( Xy, t)2dt. If
03 # o2, it is impossible for both to be correct (but for the unlikely possiblity
that o9 = —o1). This proves the negative part of Girsanov’s theorem:
Theorem: If 62 # o1, then the measures corresponding to stochastic processes
dX = agdt+o9dW and dX = a1dt+o1dW are completely singular with respect
to each other.

2.12. Likelihood ratio for SDE solutions: The positive part of Girsanov’s
theorem is about the measures for SDE solutions with the same ¢ but dif-
ferent drift, a. Suppose we have dX = ao(X,t) + o(X,t)dW; and dX =
a1(X,t) + o(X,t)dW;, which determine measures in path space dPy(X) and
dP;(X) respectively. The theorem states that the two measures are absolutely
continuous with respect to each other and gives a formula, the Girsanov formula,
for the likelihood ratio, or Radon Nikodym derivative, L(X). To be technically
more precise, we consider a time 7" and paths up to time T. Then L(X) is a
function of the whole path up to time 7.

Our strategy for finding the Girsanov formula is to find the formula for L ¢,
the likelihood ratio for the forward Euler approximations to the two processes.
The limit L(X) = lima¢ o La; will then be clear. There are probably some
technicalities needed for a complete mathematical proof, but I will not dwell on
them (an understatement).

2.13. Multiplying conditional probability densities: This is a reminder of
rule of conditional probability density density that will be used in the following
paragraph. Suppose we first choose a random variable, X, from the probability
density u(x), then choose the random variable Y from the conditional density
v1(y | X). The resulting pair (X,Y") has joint PDF U(z,y) = u(z)v(y | z). If
we then choose Z from the density v2(z | Y'), the PDF for the triple (X,Y, Z)
will be U(x,y,2) = u(z)vi(y | )v+ 2(z | y). This is a version of a rule we
used for Markov chains: we multiply the conditional probabilities (transition
probabilities) to get the joint probability of the path. Here the path is the
triple (X,Y, Z), but clearly it could be longer.

2.14. Measure for the forward Euler methgd: Our standard notation is
At =T/n, tr, = kAt, AWy, = Wiy — Wy, and X, =~ X;,. The approximation



is

Y;g+1 =X+ a(yk, tre) At + U(Y;@, te) AWy . (3)
We want an expression for the joint PDF, U(x1,...,x,), of the n random vari-
ables X1, ..., X,. The conditional probability density for X + 1 conditioned
on Fy actually depends only on Xy and 3. We call it u(wgy1 | 2;tr, At). The
semicolon separates the conditioning variable, zj, from the other arguments,
t and At. As in the previous paragraph, this is built up by multiplying the
conditional probability densities:

n—1

Ulzy,...,zn) = [ [ wzesr | ze te, AL) . (4)
k=0

For simplicity we suppose that Xy = g is specified and not random. If X, were
random with probability density ug(zg), we would multiply U by this factor.

The big PDF, U, is the PDF for the approximate path, X, up to time 7.
Because time is discrete, this approximate path consists of the n values, xy.
We follow the convention of using lower case letters, xj to be the variables
corresponding to the random variables Xj. Suppose, for example, we want to
know the probability that the approximate path is less than r for all ¢, < T.
This is the event A = {z < 7,1 <k <n}, so it’s probability is given by

T1=T Tp=T
/ / U(a:l,...,z")dzl-udxn:/U(f)df,
T1=—00 T,=—00 A

using the notation & = (z1,...,2,) € R"™ for the n numbers representing the
discrete path.

Particularly when At is small, the X} will be strongly correlated with each
other, though none is entirely determined by the others. It does not make sense
to say the xj, are correlated because they are not random variables. It is true,
as we are about to see, that U is very small if zj is far from the neighboring
values xp_1 and 1, corresponding to the fact that is is unlikely for X} to be
far from the values X3 and Xj1.

After this buildup, here is the calculation. From the forward Euler formula
(3), it is clear that conditioned on X, X1 is a gaussian random variable
with mean Xy + a(Xg,tx)At and variance o(Xg,tx)2At. Conditioned on Fy,
the only thing random in (3) is AW}, which is gaussian with mean zero and
variance At. Therefore, the formula for u(xgq1 | z; tx, At) is just the gaussian
formula for xy41 with the appropriate mean and variance:

_(l'k+1 — X — Ata(;vk7tk))2
20 (x, t)2 At

1
u(x T te, At) = ex
@kt | 2 b, AL) 2o (g, tr)2 At p(

When we multiply these together we get the desired formula:

Il (e (™ amnyar k,m)?))

1 n
k=0
()

(21 At/

U(xla"'vxn) =



2.15.  The likelihood ratio: We compute the likelihood ratio L(# = Uy(Z/Uy (%
the measures given by (5) with drift terms ag(z,t) and a;(z, t) respectively. The
limit of L when At — 0 will be clear. We have already seen that we should not
expect a reasonable limit if the volatility coefficients are different. This is why
we assume that o is the same for both processes. When taking the ratio, the
factors /2w Ato?(xy, t)) cancel, leaving only the exponential parts. The result

is

L(7) =

exp nil —((Ek+1 — Tk — ao(xk,tk)At)2 + (SUk+1 — Tk — al(mk,tk)At)z
QAtUQ(.’L‘k,tk)

k=0
If we expand the squares as
($k+1—$k—a0($k, tk)At)2 = (ka—xk)Q—Z(wkH—xk)ao(xk, tk)AIH-(Lo(l'k, tk)2At2

and cancel common the common term, there remains

L@ = exp <nzl —(Trt1 — zr)(ao(zr, t) — a1($k,tk))>

=0 02(Ikatk)

— —(ao(zk, tr) — a1 (zp, tr))?
xeXP( 2 Z:: 202 Ik,tk) (6)




