
Scientific Computing, Courant Institute, Fall 2021

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2021/index.html

Week 1
Jonathan Goodman, September, 2021

1 About this Scientific Computing course
sec:about

This class is loosely based on the book (draft) by David Bindel and me written
for an earlier version of this class. I am re-writing parts to bring them up to
date and more Python specific. Professor Aleks Donev has prepared slides
that roughly follow the same topics. These have the advantage of having fewer
words, so that the important things can stand out clearly.

These notes are for a one semester beginning graduate course on scientific
computing. The course is intended for students with the background to take a
beginning graduate class in applied mathematics. The class is supposed to be
practical. Whatever theory there is, and there is quite a bit, is there because it
is used in practice.

This course does not make you an expert in scientific computing any more
than an introductory programming class makes you a software engineer. Hope-
fully, this class will give you the background to design and understand more
specialized methods for more advanced problems.

To do scientific computing well, you have to understand computers and the
process of developing scientific computing software. Just as it’s not enough to
be a good programmer, it’s not enough to be a good mathematician. You have
to be both. This course has these less mathematical topics in classes and topics
where they seem to fit. Homework exercises will involve that material. Code
will be graded on the quality of the software, not just basic correctness.

The core mathematical prerequisites are a good class on linear algebra and
multi-variate calculus. The reasoning with involve working with inequalities
as is done in an undergraduate course on mathematical analysis. We will use
“big O” and “little o” notation, both in describing the sizes of errors, but also in
“complexity” (computer science for computational work). Students need a basic
familiarity with Python 3. In my experience, the best way to learn is from the
Python documentation directly. Stack exchange is also helpful. Less helpful,
for me, are the many “Python school” and “for dummies” sites that often come
up early in web searches. A simple recipe of the form “these lines of code do
that” are a less helpful to people who are not dummies than explanations of the
principles involved.

Some parts of the class make use of more specialized mathematical back-
ground. The part on dynamics makes use of differential equations. We don’t
use deep theory, just some understanding of what it means to model a dynamical
system using a system of differential equations and the idea that if you give “ini-
tial conditions” the rest is determined. The part on Monte Carlo methods uses

1

https://www.math.nyu.edu/~shelley/Classes/SciComp/BindelGoodman.pdf
https://scicomp2020.github.io/

basic probability. For this, you should understand the relation between probabil-
ity density and probability (integration), conditional and marginal probability
(more integration). It is helpful to know the formula for a multi-variate normal
probability density and the multi-variate central limit theorem.

I intended rewrite the Bindel/Goodman notes completely. That
will not be practical. Instead, I will just re-write parts that I now see
differently or that depend on Python instead of C++.

2 Sources of Error
sec:sources

A scientific computation (usually) does not seek the exact mathematical answer,

which we call A. On the contrary, it seeks an approximation Â that is acceptably
accurate. The error (absolute error) is e = Â−A. Much material in this course
addresses five basic questions about error:

• How big is it likely to be?

• How do we estimate how big it is?

• Why is it as big as it is?

• How can we make it smaller?

• How do we work with inexact quantities in a computation?

There are four general ways errors are introduced into a computation

Inexact computer arithmetic

If x and y are computer variables, then z = x + y usually does not produce
the exact mathematical sum of the numbers represented by x and y. Errors
in computer arithmetic are roundoff or rounding error. It is helpful to ignore
rounding errors when other sources of error are larger, but many calculations
have only rounding error and nevertheless are quite inaccurate.

Approximate formulas

If x is small, the approximation ex ≈ 1 +x may be accurate, but it is not exact.
Approximations in calculus also are not exact, including

f ′(x) ≈ f(x+ ∆x)− f(x)

∆x
. (1) eq:fd

Errors like this are often called truncation error, because they are thought of as
truncating (cutting off) an infinite Taylor sum with just a few terms.

2

Stopping iterations

An iteration produces a sequence of iterates, that would converge to the exact
answer, such as An → A as n→∞. Newton’s method for solving the equation
f(x∗) = y is one example:

xn+1 = xn −
f(xn)− y
f ′(xn)

. (2) eq:Nm

We will see (in a future class) that if x1 is close enough and if f ′(x∗) 6= 0,
then xn → x∗ as n → ∞. In practice, we terminate the iteration and use the
approximate answer Â = xn instead of the exact but unobtainable A = x∗.

Statistical error

Monte Carlo computations and stochastic simulations use computer generated
random numbers as computational tools. For example, suppose X is a random
variable with a given probability density f(x) and we want to compute

A = E[X] =

∫
xf(x) dx .

If we can sample the distribution f , then we can make independent random
variables Xk ∼ f and use sample averages as approximations

A ≈ ÂN =
1

N

N∑
k=1

Xk . (3) eq:sm

The error in such an approximation is statistical error.

Error combination

We often end up balancing errors from different sources in a computation. One
example involves the finite difference approximation (

eq:fdeq:fd
1). If ∆x is not small, then

truncation error is much larger than roundoff error. But if we try to remove
truncation error by making ∆x very small, then roundoff error is larger. There
is an optimal ∆x, small but not too small, that balances these. Exercise

ex:fdrex:fdr
3

explores this.
Another combined error example involves the Robbins Monro algorithm for

stochastic optimization. This is closely related to stochastic gradient descent
from machine learning. In this problem, you have a function defined as the
expected value of a function of a random variable and some parameters

v(y) = E[U(X, y)] =

∫
U(x, y)f(x) dx .

The problem is to find y∗ that minimizes v(y), which we write

y∗ = arg min
y
v(y) .

3

Gradient descent is an iteration for finding y∗ by going “downhill” using the
gradient

xn+1 = xn − α∇v(y) .

The parameter α is the learning rate (formerly called step size). If v is defined
as an expected value, then v may be hard to evaluate. You could choose a large
N and use a sample mean approximation like (

eq:smeq:sm
3)

∇v(xn) ≈ 1

N

N∑
k=1

∇yU(Xk,n, yn) . (4) eq:sag

The notation Xk,n suggests that you need N independent samples of X for each
iteration n, which may be a lot of samples and a lot of work doing the big
sum. Robbins and Monro suggested using just one sample per iteration, which
corresponds to taking N = 1 in (

eq:sageq:sag
4):

yn+1 = yn − α∇yU(Xn, yn) . (5) eq:RM

Either way, (
eq:sageq:sag
4) or (

eq:RMeq:RM
5), there is statistical error and termination error. If you

stop at a small n, the early termination error may be larger than statistical
error. But even if n → ∞ in the Robbins Monro iteration (

eq:RMeq:RM
5), there is still

statistical error. A smaller learning rate α makes the iteration converge more
slowly (need larger n), but reduces statistical error.

3 Relative and absolute error
sec:rae

The absolute error is is defined by a formula or by the absolute error equation:

e = Â−A , Â = A+ e . (6) eq:ae

The relative error has its formula and relative error equation:

ε =
Â−A
A

, Â = A(1 + ε) . (7) eq:re

Relative error is usually a more useful error measure than absolute error. One
reason is that relative error is dimensionless. You can think of it as a percentage
of the answer, as in “one percent accuracy”. For example, suppose the exact
answer is A = 12345.67 and the computed answer is Â = 12249.52. The absolute
error is almost a humdred, which may seem like a lot, but the relative error is

ε =
Â−A
A

=
12249.52− 12249.52

12249.52
= .0078 · · · .

Floating point computer arithmetic (see Section
sec:fpsec:fp
5) has uniformly small rel-

ative error over a wide range of number size. That is, the relative error in
computing x+ y is almost the same as the relative error in 100x+ 100y, unless
y and y are near the edge of the range of floating point numbers. This range

4

seems very large at first, but simple practical calculations often reach the edge
of it. Exercise

ex:mlex:ml
6 gives an example.

Catastrophic cancellation is a form of error amplification that may be ex-
plained in terms of relative error. Suppose x and y are computed to high relative
accuracy. This means that the computer has

x̂ = x(1 + εx)

ŷ = y(1 + εy)

We simplify by imagining that z = x+ y is computed exactly:

ẑ = x̂+ ŷ .

For absolute error, we just have (hoping the notation is clear)

|ez| ≤ |ex|+ |ey| .

From the point of view of absolute error addition does not seem to be a problem.
The relative error story can be seriously different. We start with the relative

error equation
z(1 + εz) = z + xεx + yεy .

This leads to

εz =
xεx + yεy

z
.

This shows that εz can be much larger than εx and εy if |z| is much smaller
than |x| and |y|. Of course x+y is much smaller than x or y (in absolute value)
if x ≈ −y. This is cancellation – subtracting numbers that are nearly equal
or adding numbers that are nearly opposite. Cancellation can lead to a large
increase in relative error. Catastrophic cancellation means losing all accuracy
in one subtraction or addition. More gradual error amplification comes from
losing a little relative accuracy each operation in a long computation. Exercise
ex:fdrex:fdr
3 illustrates catastrophic cancellation arising from the finite difference formula
(
eq:fdeq:fd
1). This happens because f(x + ∆x) is approximately equal to f(x) when

∆x is small. Exercise
ex:Fibex:Fib
5 is an example of gradual cancellation in a sequence of

operations.

4 Condition number
sec:cn

The condition number of a problem is a fundamental barrier to accurate com-
puter solution of a problem. The condition number of a problem does not depend
on the algorithm used to solve it. A problem with a large condition number is ill
conditioned and may be intrinsically impossible to solve accurately. A problem
with a moderate condition number is well conditioned.

Condition number measures the relative change in the answer to a prob-
lem caused by a small relative change in the input. There are mathematical

5

definitions of condition number that capture this idea in various ways. One
simple definition involves a problem A(x) (the answer to a problem) that de-
pends on a single parameter, x. If x changes by ∆x, then the answer changes
by ∆A = A(x+ ∆x)−A(x). The ratio of the relative changes is

relative change in A

relative change in x
=

∆A
A

∆x
x

For small ∆x, we use the calculus approximation ∆A ≈ A′(x)∆x. This leads
to the differential, one variable condition number

κ =

∣∣∣∣xA′A
∣∣∣∣ . (8) eq:kap

The condition number, κ, is dimensionless.
The condition number κ is dimensionless. For non-mathematicians, this

means that whatever units the quantities x and A may have cancel in the ratio
(
eq:kapeq:kap
8). For example, if A is the speed (in meters/second) of a rock with density x (in

grams per cubic centimeter) then all these units (meters, grams, seconds) cancel.
For mathematicians, “dimensionless” means scale invariant. You can rescale the
answer by a parameter λ and the parameter by µ to get a re-scaled problem
B(x) = λA(µx). The condition number of B is the same as the condition
number of A.

Being dimensionless matters because only dimensionless numbers can be
large or small in any real sense. It makes sense to say 600 is big, but the
number 600 in “600 seconds” would be changed to 10, if we said the same time
as “10 minutes”. But even dimensionless numbers might need to be compared
to standards. It is helpful to judge condition numbers using accuracy of floating
point arithmetic or using uncertainties in input parameters.

Real problems typically have more than one input parameter and more than
one output value. Conditioning and condition number is important for such
problems, but it is trickier to define. Some aspects of conditioning are quite
different in multi-variate settings. The present “scalar” condition number is
invariant under rescalings, but re-scalings of multi-variate problems can improve
the condition number, provided you scale different variables and/or outputs
differently.

There is a real sense in which a problem that is too ill-conditioned cannot be
solved by any algorithm. For example, suppose κ = 1018 (this happens often).
On the computer, the first thing you have to do is round x to double precision
floating point (see Section

sec:fpsec:fp
5). That is, the mathematical x is replaced by its

floating point approximation fl(x). The relative difference ∆x/x = (fl(x)−x)/x
is on the order of the machine precision εmach, which is on the order of 10−17 in
double precision. This means that just inputting the problem into the computer
changes the answer by a factor of κεmach ≈ 10. If x is a measured quantity, its
accuracy will be much less and the condition number constraint more severe.

A computational algorithm is called stable if its accuracy is roughly the best
possible given the conditioning of the problem. If an algorithm is not stable

6

in this sense, then it is called unstable. To get an accurate answer, you need a
stable algorithm for a well conditioned problem.

If an algorithm is unstable, the reason often is that it involves a sub-problem
that is ill conditioned. Here is a famous example that the course will come back
to later. It involves a system of linear differential equations

ẋ = Lx .

with x having n components and L being an n × n matrix. Some solution
algorithms involve finding the eigenvalues and eigenvectors of L. There are
common practical examples where the eigenvalue/eigenvector problem for L
is extremely ill-conditioned even though the differential equation system itself
is well conditioned. In such cases, an accurate solution strategy cannot use
eigenvectors.

5 Floating point arithmetic
sec:fp

Scientific computing consists mostly of computer arithmetic. You should how
this arithmetic works to compute well. The command z=x+y does not necessarily
give the mathematical sum of x and y. What it does depends on the kind of
computer number used for x and y.

There are two basic forms of computer number and computer arithmetic,
integer and floating point. In Python, the format for holding a number is called
the data type (dtype in numpy). There are several integer and floating point
data types, depending on parameters such as the size (number of bits) and range
(signed or unsigned integer).

The bit is the basic unit of information stored in a digital computer. A bit
has two possible values, called 0 and 1. A byte is a sequence of 8 bits. The
number of distinct bytes is 28 = 256. This is enough to assign a distinct byte
to every commonly used symbol in the Latin alphabet, which is why character
strings may have one byte per character. A word is a sequence of bytes, often 4
bytes (32 bits) or 8 bytes (64 bits). There are 232 ≈ 4 · 109 = 4 billion distinct
32 bit words. A GHz (giga Hertz) is a billion operations per second, so a 2
GHz computer could list all 32 bit words in two seconds. A 64 bit word has
about 4 billion more possibilities (264 = 232 · 232), so a practical laptop will not
exhaust all of them in a practical amount of time. Exascale computing means
1018 ≈ 264/16 operations per second. Such a machine can go through all 64
bit words in a practical amount of time. Billion dollar exascale computers are
starting to be constructed.

5.1 integers

An integer data type is a representation of a mathematical integer in base 2
using a sequence of bits.

7

6 Software standards
sec:ss

As was said already, you have to be good at programming to be good at scientific
computing. Studies and personal observation shows that good programmers all
adhere, fairly strictly, to personal standards of good programming practice.
Computational exercises for this course will be graded for code quality as well
as for correctness. Points will be deducted for any of the following standards
that are not followed. Some of them may seem to slow you down at first, but
software is meant to be used (“production runs”) and built on, both of which
are harder if the original code is careless and sloppy.

Basic coding style

There should be lots of comments explaining the code. Variable names should
be short enough to be easy to read and remember (e.g., x for a space variable, t
for a time variable) and chosen to help the reader know what they’re for (e.g. dx
for ∆x). Use white space (blanks and blank lines) to make items in code line up
and to separate different parts of code. The top of each Python module should
have comments (and, later, docstrings) saying what the code does, how it fits in
with the overall project (if there’s more than one module for the project) and
who wrote it and when.

Code flexibility

Every parameter in the code should be a named variable with a comment saying
what its role is. For example, rather than for i in range(10): (to do some-
thing ten times), define its = 10 # number of iterations (if it’s iterations)
followed by for i in range(its):. Putting the number 10 in directly is called
a “hard wired constant”. This makes it hard to modify the code, as you will
learn if you break the rule.

Take into account computer arithmetic

Never test whether different floating point numbers are equal – they won’t be
even if they are equal “in exact arithmetic” (i.e., if a mathematical formula were
evaluated exactly). Never make what can be an infinite loop, such as iterating
until an error is equal to zero (won’t happen) or even until an error is less than
.000000001 (might not be met, depending on the sizes of the numbers involved).
[By the way, write 1.e-8 than .00000001, because it’s easier to read a number
than to count zeros.] You don’t know, in floating point, whether 10−8 is small,
large, or impossibly small. Instead, count iterations and quit the loop after
some number (e.g., 1000).

Do not fail silently

Be aware of things that can go wrong in a code and plan/code for them. Print
an error message or raise an exception if an iteration fails, or if a parameter is

8

out of range or something like that. Otherwise, the computation can fail – give
a completely wrong answer – without the user knowing.

Make easy to read output

Make printed messages line up to be easy to read. Make them clear on their
own (e.g., not “error code number seven”). Use formatting for numerical output
rather than the built in str(). Make clear tables of output.

7 Exercises
sec:ex

In the coding parts, please write code that conforms to all relevant coding
standards of Section

sec:sssec:ss
6. Part of the homework grade will be based on code

quality. Attach printouts of code modules and output to the written homework.
Upload the module you used for Exercise

ex:Fibex:Fib
5.

Several exercises ask for “estimates” of quantities. This is something scien-
tists and engineers typically do well and mathematicians do badly. To estimate,
you simplify a problem to make calculations easier while, hopefully, preserving
the nature of the problem. For example, in exercise

ex:mlex:ml
6, you might replace a

random variable with a number representing about how big it is likely to be.
Estimates made in this way are not exact. But they allow you to understand

practicalities. For example, the maximal N in exercise
ex:Fibex:Fib
5 might be 20 and you

might estimate 40. Even though it’s off by a factor of two, it explains that not
vary large N (less than a hundred) can be impractically large for this. To do
this kind of thing effectively, you have to simplify intelligently, understanding
what is essential. Unfortunately, math students get informal intelligence drilled
out of us.

1. Show that the problem of computing sin(x) is well conditioned for x near
zero but poorly conditioned for x near π.

2. (from Jim Demmel’s book Practical Linear Algebra) Show that evaluating
the polynomial f(x) = (x−1)n in floating point is more accurate using the
direct formula than the binomial expansion when |x− 1| < 1

2 and n ≥ 10
(arbitrary values meaning x is close to 1, but maybe not very close, and
n is large but maybe not very large)

(x− 1)n = xn − nxn−1 +
n(n− 1)

2
x2 − · · · ± 1 .

Make some specific quantitative statements about the relative error of the
answer computer each way. Hint. Cancellation.

ex:fdr 3. This exercise explores the tradeoff between roundoff and truncation error
in estimating the derivative of a function using a finite difference. The

9

two point forward difference approximation (more on this next week) to
the derivative is

f ′(x) ≈ D+(f,∆x) =
f(x+ ∆x)− f(x)

∆x
.

Do a few experiments that involve making tables of D+(f,∆x) with x and
f fixed and a range of ∆x values. Each row of the table should include,
besides ∆x, f ′ and D+, the relative and absolute errors. Each row should
have results for single and double precision. Once you have the basic code,
experiment with the range of ∆x to see the truncation error/roundoff error
tradeoff (decreasing ∆x at first improves accuracy, then reduces accuracy).
Try at least the examples f(x) = ex with x = 1, and f(x) = sin(x) with
x = 0. The week 2 material will explain why results are better for the
second example. The posted Python code PrecisionDemo.py for how to
control precision.

ex:Fth 4. (This exercise explores the mathematics of recurrence relations, in the
special case of the Fibonacci numbers. This analysis of recurrence relations
is used in many places in scientific computing.) The Fibonacci numbers
are a sequence1 f0 = 1, f1 = 1, f2 = f0 + f1 = 2, f3 = f2 + f1 = 3, etc.
The general rule for Fibonacci numbers is

fn+1 = fn + fn−1 . (9) eq:Fr

This is an example of a recurrence relation. The sequence is completely de-
termined by its initial conditions (f0 = 1 and f1 = 1), and the recurrence
relation (

eq:Freq:Fr
9).

(a) Show that there are two numbers r so that the sequence fn = rn

satisfies the recurrence relation (
eq:Freq:Fr
9). Note, these are not the Fibonacci

numbers because they do not satisfy the initial conditions. Show that
they satisfy 0 < r1 < 1 < r2. The number r2 is called the golden
mean or the golden ratio. Figure

fig:GoldenMeanfig:GoldenMean
1 explains what this means.

1This sequence appears in a book Liber Abaci (“liber” means “book” (Latin) and “abaci”
means “calculations” (arithmetic)) that was published in 1202 by the Italian trader now called
“Fibonacci”. The book explained that the Arabic number system, which he had just learned
during a business trip to Beirut and we still use, makes arithmetic easier than the system
generally used in Italy in 1200 – Roman numerals. For example, XIV + XCVI = CX Roman
numeral equivalent of 14 + 96 = 110. The Fibonacci numbers in Roman numerals are I, I, II,
III, V, VIII, XIII, XXI, XXXIV, LV, LXXXIX, · · · . Imagine an Italian trader (like Fibonacci)
keeping financial records using Roman numerals. In the book, the “Fibonacci sequence” is
used to show how easy the Arabic number system is.

10

b

a

b-a

Figure 1: The perfect aspect ratio, according to ancient Greek temple builders,
had long side b and short side a so that when you take out a square (magenta
on the left), the remaining rectangle (green on the right) has the same aspect
ratio. That means that b

a = a
b−a . The left side is the aspect ratio of the big

rectangle. The right side is the aspect ratio of the green rectangle on the right.
The ratio b

a = r2 (in notation here) is used for the Parthenon. fig:GoldenMean

(b) Show that if f0 and f1 are any two numbers, then there are numbers
x1 and x2 so that f0 = x1 + x2 and f1 = x1r1 + x2r2. Do this by
finding a 2× 2 matrix A so that these equations are given in matrix
form as Ax = f , with

x =

(
x1

x2

)
, f =

(
f0

f1

)
.

Show that A is non-singular if and only if r1 6= r2.

(c) Show that if fn is any sequence that satisfies the recurrence relation
(
eq:Freq:Fr
9), regardless of initial conditions, then the sequence is given by

fn = x1r
n
1 + x2r

n
2 .

The coefficients x1 and x2 are found as in part (b).

(d) Show that if x2 6= 0, then

fn+1

fn
→ r2 , as n→∞ .

Show that this ratio limit formula holds for the fibonacci numbers
(f0 = f1 = 1). The ratio of Fibonacci numbers converges to the
golden mean as n→∞.

11

(e) Suppose that the recurrence relation is implemented in floating point,
as in F[n+1] = F[n] + F[n-1]. This would produce floating point
numbers with relative errors εn, as expressed by Fn = fn(1 + εn).
The floating point addition also would have an error, as in Fn+1 =
(Fn + Fn−1)(1 + δn). Derive the error propagation equation

εn+1 = δn + εn
fn
fn+1

+ εn−1
fn−1

fn+1
. (10) eq:epe

(f) Give an informal but quantitative argument that (
eq:epeeq:epe
10) implies that

the relative error in computing the fn in floating pointing point arith-
metic is on the order of nεmach, as long as fn is within the range of
floating point numbers. Hint. The ratios on the right are roughly 1

r2

and 1
r22

respectively, unless n is small. Show that 1
r + 1

r2 = 1 for either

root. You can do this directly from r2 = 1
2 (1 +

√
5), which makes

it seem special for the Fibonacci recurrence relation (
eq:Freq:Fr
9), or you can

derive it from the polynomial equation r satisfies.

(g) (The point of this sequence of steps) Suppose we have computed up
to some N and have in the computer gN = (1 + εN)fN and gN+1 =
(1+εN+1)fN+1. Suppose we compute g0 using the Fibonacci relation
backwards: gn−1 = gn+1 − gn. Suppose that the gn calculations are
done exactly. If εN = εN+1 = 0 then gn = fn. Assume that |εN | ≈= ε
and |εN | ≈= ε. Find how large N can be so that |f0 − g0| ≤ f0 = 1.
What are the numbers for ε ≈ 10−7 (single precision) and ε ≈ 10−16

(double precision)? How much difference does it make (how much
does N change) if you replace the assumption by the more realistic
(according to part (f)) bound εN ∼ Nεmach?

ex:Fib 5. Write a Python code to verify/explore the results of Exercise
ex:Fthex:Fth
4. Your code

should start with f0 and f1 and use the Fibonacci recurrence to compute
fn for n up to some N+1, then turn around and re-compute fn−1 from fn
and fn+1 to get back to f0. Compare the re-computed f0 to the original
one. Make a table (well formatted) of the relative and absolute error as
a function of N for a range of N where the result is completely wrong.
Repeat the experiment for the related recurrence fn+1 = afn + fn−1 with
a = 1 + .1 ·

√
2. The precise formula for a is not important, only that it is

close to 1 so the recurrences behave similarly and that it is not a simple
number base 2. Describe the similarities and differences in the results.
Use what you know about computer arithmetic to explain the difference.

ex:ml 6. (This exercise illustrates that the range of values in floating point can be
an issue, even when the range goes up to 10300. It is “real” in the sense
that more than one person working with me has had to modify a code to
avoid this issue.) Suppose you have data values Xi observed at times ti
with unknown precision σ (same for each observation). The model is

Xi = A sin(ωti + θ) + ri .

12

The observation errors are the “residuals” ri, which we assume are Gaus-
sian with mean zero and common variance σ2. We wish to fit the model
parameters A (amplitude), ω (frequency), and θ (offset). We also will
fit the “nuisance parameter” (more properly, latent parameter) σ. With
observation error, the probability density to observe x at time t is

f(x|t, A, ω, θ, σ) =
1√

2πσ2
e−

(x−A sin(ωt+θ))2

2σ2 .

The corresponding likelihood function is

L(A,ω, θ, σ) =

n∏
i=1

f(Xi|ti, A, ω, θ, σ) .

Maximum likelihood estimation means finding parameters A,ω, θ, σ to
minimize L. To do this, a code must evaluate L with parameter values
possibly far from optimal. Specifically, suppose there are n = 100 data
points and you want to evaluate L with σ = 1 when the true value that
made the data had σ∗ = 3. Show that L is probably outside the range of
double precision floating point. For this, assume that (a Gaussian random
variable it typically about the size of its standard deviation)

(Xi −A sin(ωti + θ))2

2σ2
∗

=

(
ri
σ∗

)2

∼ 1 .

The log likelihood function is l(· · ·) = log(L(· · ·). The log likelihood is
a sum over data, rather than a product. Show that the log likelihood is
likely to be within the range of floating point for reasonable values of n
and σ. [Of course, minimizing l also minimizes L. This exercise illustrates
one of the reasons practical minimization codes typically use l instead of
L.]

13

	About this Scientific Computing course
	Sources of Error
	Relative and absolute error
	Condition number
	Floating point arithmetic
	integers

	Software standards
	Exercises

