
Scientific Computing, Courant Institute, Fall 2021

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2021/index.html

Python Part 2
Jonathan Goodman, September, 2021

1 About these notes

These notes explain parts of Python that allow you to define a function that
depends on a dataset and use it in a scientific computation. The person design-
ing scientific computing software will not know precisely what data is needed to
define a specific function, so he/she wants software that works with a function
without seeing the data. Many software packages work in this way, including
the Emcee, a code for Bayesian estimation and uncertainty quantification.

The Python class mechanism allows for such data storage and hiding. A
class in Python is a user-defined datatype. You define a class designed to hold
data, then you create an instance of the class, which is a Python object, for
the specific dataset. The constructor of the class (see below) reads the data,
and makes it available to other functions in the class, when associated with this
specific instance. Other functions associated to the class say how the function
is defined in terms of the data.

These notes explain a minimum you need to do this. There is some general
background about classes, but it is better to get that straight from the Python
documentation. Of course stack exchange has reliable answers to many
specific questions. As usual, I discourage people from using “for dummies”
explanations, which generally tell you how to do very specific things without
telling you how to modify them to do what you really want.

Many aspects and uses of classes are not mentioned here. One big topic
not mentioned is the distinction between instance variables and class variables.
Here, class variables (or names that are bound to them) are not discussed at
all. There’s nothing here about class inheritance either.

I appreciate that the material seems unnecessarily technical. But it’s not
really that technical because it’s based on just a few powerful principles. It is
possible for ordinary Scientific Computing students to understand enough to
create and use classes like a pro. You don’t have to work by trial and error
from examples. The Python class mechanism is lightweight. This means it is
not complicated and doesn’t take a lot of code to accomplish. It helps that it is
based on simple general principles rather than a long list of rules for particular
cases.

2 Classes = functions acting on data

Modular code is a core software principle. Code for separate tasks should be

1

https://emcee.readthedocs.io/en/stable/
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

isolated into separate modules where it can be developed and tested without
the clutter of a complex and changing context. Interfaces between different
modules or software components should be designed so that each part “sees”
what it needs to do its function.

This principle suggests that part A of a code should be able to use part B
without telling part B data that part A doesn’t use itself. For example, suppose
part A computes the integral of a function f(x) whose values are computed by
part B. The function f probably depends on more data than just the argument
x. It could be as simple as f(x) = xn, with a single data number n in addition
to the argument x.

The code that evaluates the integral needs to communicate x values to the
code that evaluates f , but it should not communicate, or know, the value of
n. That’s data hiding. This simplifies the integration code. It also makes it
possible to test the integration code on simple functions that don’t need much
data and then apply it to complex functions that require large datasets. Modular
validation (debugging) is as important as modular code.

Classes are a way to create modular code that does data hiding and allows
modular validation. By definition, a class is a data type defined by software.
The definition can be in a package, such as numpy, or you write your own code
to define your own class. If you define a class called A then the environment can
have objects whose type is A. An object x of type A in an instance of the class
A. Names may be bound to class instances (objects of type A) in the usual way.
As with other objects, the command y = x does not copy the contents of the
object x points to. It just binds the name y to the same object.
Warning. The class mechanism is Python 3 is different from what it was in
Python 2.7 and is radically different from the mechanism in C++ or Java. One
difference between C++ and Python classes depends on the fact that Python
classes involve namespaces that anyone can add to. Python classes have no
privacy. You can add a name to the namespace of an instance of a class without
adding that name to the class definition. The Python programmer must take
care not to abuse this freedom in a way that makes unreadable code.

3 Scope

A scope is a block of Python code where a local namespace is defined. You
can read about this in the Python documentation link above. The code inside
a function or class definition is a scope. Any name defined inside a scope and
added to the local namespace will be lost when the code leaves that scope.
Objects these names are bound to might be forgotten if no other names are
bound to them. The code defining a function or a class is a scope.

2

4 Functions

A function in Python is a kind of object. It consists of an argument list and a
sequence of Python commands, which are the body of the function. The keyword1

def tells the Python interpreter that a function is being defined, first giving a
name and arguments, then the body. You access a function through a name
bound to it, just as you access numbers or other objects. As with other objects,
you can bind more than one name to the same function, though you should have
a good reason to do that. Lines 28 and 29 in Figure 1 illustrate this. A function
is evaluated by executing the commands in its body.

The arguments are passed from the calling code to the function in a “pythonic”
way (a way that is natural in the Python mindset). The names in the argument
list are added to the local namespace in the scope of the function definition.
These names are bound to objects that are present or created when the func-
tion is called. New objects are created for immutable objects but not mutable
ones.

Figure 1 shows the basics of Python functions, from a numerical computing
point of view. Lines 10 to 19 are a scope that contains the commands that define
the function. Line 9 creates the name q and binds it to this function. The (x)

is the argument list (consisting of just one argument here) that contains the
name x. Line 22 (among other things) binds the name x (from the argument
list) to the object that name t is bound to when the command is executed. In
this case, it’s the immutable object 2.0. Executing line 22 will cause lines 10 to
19 to be executed, with name x bound to object 2.0. Line 10 is a docstring. In
this class, every function and class definition must have a complete docstring.
Lines 10 to 15 of Figure 2 give an example of a more complete docstring. In a
perfect world, you would be able to use the function without reading the code
in the function, only the docstring.

The return command in line 19 passes information back from the function.
The names q and qp are bound to objects. The command binds names
f and fp (line 29) to these objects. The pair q,qp on line 19 form a tuple. A
tuple is a Python object that acts like an un-named list (a list with no name
bound to it). A tuple can have any number of names. The number of objects
being broadcast (two, in line 19) must match the number of names being bound
(two, in line 22). The output from lines 23 to 25 (first output line below) lets
us check that the function q(x) = x2 − x− 1 (the “Fibonacci polynomial” from
Week 1) correctly evaluated to q(2) = and q′(2) = 3.

Lines 28 and 29 illustrate the fact that q is a name bound to the function
defined in lines 9 to 19. The name r can be bound to the same function.
Normally, you would need a good reason to do this because it makes the code
harder to read. The second line of output shows that, again correctly, x2−x−1
evaluates to 5 when x = 3.

1A keyword is a name (character string) that has a pre-defined meaning to the interpreter.
Other keywords are if, return, etc. You are not allowed to bind a keyword (assign an object
to it). You will see this if you try, as a command, for = 4, because for is a keyword.

3

jg% python3 FunctionDemo.py

First function demo

f(2.00) is 1.00e+00, and f’ is 3.00e+00

f(3.00) is 5.00e+00, and f’ is 5.00e+00

A function must be defined before it can be used. That’s why the function
]tt q in Figure 1 is defined at the beginning and used at the end. It is usually
recommended to define functions in other modules instead, and read in their
definitions using import statements. That makes the code in the “main pro-
gram” easier to figure out, because the main things (starting at line 21) would
be at the top rather than after some technical function definitions.

Figure 1: Code illustrating the basic mechanics of Python functions.

Figure 2 illustrates a few more things. This function has two arguments,
one being a number and the other a numpy array. The docstring documents
the function, so you can use the function after reading only the docstring. Un-
fortunately, real docstrings don’t live up to this standard. For example, this
one doesn’t tell the user how the function knows the degree of the polynomial.
You have to read the code to see that it gets it from the number of coefficients,
which is deg(p) + 1 (see line 17). A careful grader would take off a point for a

4

mistake like that. In a collaborative coding environment, your co-worker would
complain to you.

Lines 39 to 42 define the specific polynomial:

p(x) = xd + 2xd−1 + · · · + dx+ (d+ 1) .

Here d = 4.
When p is called from line 46, the name a is bound to the object that the

argument c was bound to. In this case, that’s a numpy array. This is an
example of what in C/C++/FORTRAN is called call by reference. If such a
mutable object is “mutated” (changed) in the function, that can be seen from
outside the function. It would be a side effect of the function. Communicating
from the function using side effects can make code hard to follow, particularly
if these side effects are not described clearly in the docstring. If you re-assign
an immutable object as in line 35, that effect is not seen outside the function2

because the new object (7.0 in this case) is only bound to from a name in the
namespace of the function. Passing immutable objects to functions acts like
call-by-value in C/C++/FORTRAN.

Here is the output, from the command line:

jg% python3 ArgumentPassing.py

First function demo

f(1.00) is 1.50e+01, and f’ is 2.00e+01

t is 1.0, and c is [7. 4. 3. 2. 1.]

First, you see that it correctly calculates p(1) = 1 + 2 + · · · + 5 = 15 and
p′(1) = 4 + 6 + 6 + 4 = 20. Next you see that the immutable argument, which
was re-assigned in the function (line 35) kept its value outside. You see that
line 36 did alter the array c. The value c[5], which had been 5 was changed to
7. The unformatted output here is not so hard to read, which is only because
the entries of c are simple numbers. The grader, if she/he were were grading
very carefully, would subtract a point for using unformatted output. I did it to
show that you do it in debugging and experiments, but not in the final finished
product.

2There is a saying “What happens in Vegas stays in Vegas.” This refers to something
someone might do in the gambling and prostitution capital of the US, Las Vegas. You’re not
supposed to tell anyone about it when you get back.

5

Figure 2: Code illustrating function argument passing.

5 Classes

The material in this section may seem technical. I don’t know it’s described in
the clearest way. But once you get it, you will be able to use classes confidently.
They are simple, but

A class is a user defined datatype. Defining a class (details below) has
the effect of creating a name that is bound to the definition of the class. If,
for example, the name A is bound to a class, we call the class A. The Python
command

6

x = A(args)

creates a new object of type A using information in the argument list args, and
binds the name x to this class instance object. Some of the code defining the
class (the function init described below) says how the new object is to be
built.

A class object (instance of the class) may hold data that is unique to that
instance. It accesses this data using names in a dedicated namespace for the
instance. The interpreter keeps track of all these namespaces for all the objects
of a given class and supplies the right one to each instance as needed. The
namespace has two names, depending on whether you are “inside the instance”
or not. Outside the class, the namespace is the name bound to the class object.
For example, the name x.f refers to the name f in the instance x. The code
defining the class cannot work this way because the name of the object (class
instance) is not known when the class is defined and different instances will
have different names. By tradition, “this” is the name of the namespace in
code defining the class.

Figure 3 illustrates definition of a class. The class is used for data fitting of
an oscillation to data The data are n observations Xi made at times ti. The
theory/model is a simple oscillation f(t) = A sin(ω(t− t0)). The mismatch is

R2(ω,A, t) =

n∑
i=1

[Xi −A sin(ω(ti − t))]
2
. (1)

This sum of squares is the log of the likelihood function, assuming a Gaussian
error model and neglecting irrelevant constants.

Line 8 says we’re defining a class whose name is LL (for Log Likelihood).
Then comes three lines of docstring. Please decide for yourself whether the doc-
string meets the standard that you can use the class after reading the docstring
but without reading the rest of the code defining the class. Line 13 defines a
function called init . The underscore characters before and after init are
a Python convention that tells you not to call this function yourself. Only the
developer (or, in this case, the Python interpreter) should call it. The init

function is the constructor for class instances. It says how an instance of thee
LL class is to be built. The interpreter calls init for the class whenever a
new instance of that class is created.

The three arguments to the constructor, init , go into the local names-
pace when init is executed. The first argument, this, is the name of the
namespace of class instances (see below). It is created by the “system” (Python
interpreter). The other two are arguments given to the constructor when it is
called. Lines 22 and 31 of Figure 4 have calls to the constructor. Executing them
creates two instances of the LL class. The names model1 and model2 are bound
to these two instances. You can think of the function LL in the namespace LL

as being bound to the constructor function init , but the reality probably
is more complicated. The calls to the constructor in Figure 4 have just two
arguments, times and values. The “third” argument (the first, actually), is

7

this, which is supplied by the system. Inside the init function (lines 13 to
22 in Figure 3) the local namespace is “born” containing this, t, and X. Line
20 creates a copy of the input array t that is bound to from a name in the this

namespace. If the command had been: this.t = t, it would have bound the
local name to the same object the argument is bound to. That would make it
possible for the calling routine in Figure 4 to change the data in the model1

instance. To protect the local data, line 20 creates a new numpy array with the
same data. Line 22 copies n from the local namespace to the this namespace.
Names in the local namespace are forgotten when the init routine finishes,
but names in this remain a part of the object being created. Line 31 shows that
this name is still bound to n. The simpler expression: for i in range(n):

would have been a bug because n is not a name in the local namespace of the
function ssq.

Lines 24 to 34 of Figure 3 create a function that is part of the LL class. It
computes the sum of squares using data Xi and ti attached to this instance,
using the supplied arguments ω, A, and t. It also has access to the namespace
this. The data are stored in numpy arrays that are bound from names in this.
Line 32 uses these values.

Finally, the slice function produces a one variable “slice” of the log likelihood
function with all arguments except the amplitude, A fixed. This will allow the
integration function to integrate over the one dimensional slice. The values of
ω and t0 are supposed to be known. You might wonder how they come to be
known, given that the constructor doesn’t set them. That is explained below.
Line 62 evaluates the ssq function associated to the same class instance that
called slice. The namespace this has a reference to the instance of the function
with access to the correct data.

8

Figure 3: Code that defines a Log Likelihood class.

Figure 4 shows how the LL class is used. Line 7 imports the names defined
in the module LogLikelihood into a namespace called LL. Lines 12 to 20 create
numpy arrays times and values stuffed with fake data. Line 22 creates the
name model1 and binds it to an object of type LL. The data in numpy arrays
times and values will be stored locally in the object, so that later changes to
times do not propagate to (change) the object.

Lines 23 and 27 show the point of putting data into class objects in this
way. Suppose we are trying to find parameters ω, A, and t to fit the data.
This requires us to “query” the sum of squares function (1) many times with
different parameter values. This might mean using a numerical integration or
optimization package. We want to write integrators and optimizers that don’t

9

know what kind of data their functions work on. Line 22 passes the data to the
model1 object. After that, the sum of squares may be evaluated for different
parameter combinations without referring to the data.

The rest of the code in Figure 4 makes other pedagogical points. Line 31
shows that you can create more than one object of the same type. That could be
a way to compare predictions from different data sets. Lines 32 and 33 illustrate
that the datasets in model1 and model2 are different. They also illustrate the
fact that data members in a class are not private and they can be in C++.
[If you don’t know C++, ignore this point.] Even though the developer of the
Figure 4 code has direct access to the model data, he/she normally would not
access it that way. It’s better to use the interface created by the developer who
“build” the LL class. In Python, there are many things that you can do that
it’s best not to do except in very carefully thought out and documented ways.

Figure 4: Code showing how the LL class is instantiated and used.

Here is what happens when you run the demo at the command line.

jg% python3 ClassDemo.py

Getting classy

If the data got to model 1 correctly, this will be zero: 0.0

10

Calculate ssq when parameters are not the physical ones: 0.04549229947150629

t array of model1 is [0. 1. 2. 3.]

t array of model2 is [2.71828183 1. 2. 3.]

After Getting classy, the first two output lines show that the sum of squares
is zero (as it should be) when the exact parameters are used but non-zero other-
wise. Next we see some of the stored data from model1 and model2. You can see
that un-formatted numerical output can be hard to read. That’s why this class
usually requires numerical output in programming exercises to be formatted and
aligned.

6 Using a class function

The Python concept of attribute of an object is similar to (the same as?) the
concept of name in a namespace. If m is the name of an object, such as an
instance of a class, then f is an attribute of m if the interpreter can find an
object corresponding to m.f. This is the same (almost the same?) as f being
in the namespace m, except that m can be an object that is not a namespace.

Figure 5 gives a basic illustration. The class model (line 7) has no constructor
(no init function), just a function f. Line 8 shows that within the class,
the function f has two arguments, with the first one being this (the instance
namespace) and the second being the user supplied argument x. Lines 13 and
17 show that you just give the argument x when you use f from outside the
class. Line 17 shows f being an attribute of m. The argument, a floating point
approximation of π supplied by numpy, is passed to f in the usual way. Line
12 shows a function tf (for “text function”) being defined with an argument m.
This function knows nothing about m except that it has an attribute f (line 13).
Line 18 shows passing an argument m to tf that does have an attribute f. The
output shows that the second argument (π) is passed to tf and then to m.f to
get the right result.

This attributes mechanism makes it possible to write flexible numerical code
that takes functions defined in different ways. The function can be a simple
formula, as here, or it can be defined in a complicated way using data, as in
Figure 7. That object that “carries” f as an attribute might be simple, or
it might have many other attributes and internal data. Python doesn’t check
the types of objects as they are passed to functions, as compiled languages like
C++ or FORTRAN usually do. The definition of the function tf doesn’t say
anything about the types of the arguments m and x. The program will crash if
tf tries to use one of its arguments in a way that is not defined or allowed. For
example, it would crash if the argument m does not have an attribute f, or if x
is a character string for which sin(x) is not defined.

I use test modules like the one in Figure 5 to debug my understanding of
Python. I write code that is as simple as possible to explore and test whatever
feature I’m interested in. It takes less time and is more clear when there’s no
other stuff “in the say”, such as numerical integration software.

11

We will see (lines 35 and 36 of Figure 7) that the class definition does not
necessarily determine what attributes a class instance might have. They can be
added from the outside, which may be bad software practice because looking at
the class definition doesn’t tell you what’s in the class.

Figure 5: Use a class object to define a function to be integrated.

This section demonstrates code for numerical algorithm, with the code writ-
ten for a generic function that is supplied as an argument. Figure 6 code im-
plements the midpoint rule for integration. The docstring should explain this.
The argument model is a function. Line 17 uses this function.

12

Figure 6: A module with code for the midpoint rule integration.

Figure 7 puts everything together. Line 7 gets the data model, which will be
a log likelihood function. Line 8 gets the integration algorithm, the midpoint
rule in this case. Lines 14 to 21 create fake “data” to illustrate working with
data. In a real application, the data probably would come from a data file.
Some future Python note for this course will discuss reading from a data file.
That said, it is common to test computational methods on fake data before
running them on real data, so models with fake data happen in real computing
projects. Line 25 instantiates (makes an instance, creates) the LogLikelihood
object and binds the name model1 to it. Lines 32 and 33 add new names to the
namespace of the model1 object. These allow the slice member function to
work. You cannot (as far as I know) do anything like this in C++, where the
members of a class are defined “at compile time” by the code defining the class.
In Python, it is possible to have a class with a trivial constructor (no init

and have all the data and functions added afterwards, “from the outside”. That
would make it hard for the “user” to figure out what the class is about.

13

Figure 7: Use a class object to define a function to be integrated.

14

	About these notes
	Classes = functions acting on data
	Scope
	Functions
	Classes
	Using a class function

