
Scientific Computing, Courant Institute, Fall 2021

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2021/index.html

Python Part 1
Jonathan Goodman, September, 2021

1 About coding, Python and these notes

I have seen many smart students learn to code and do scientific computing.
The process can be frustrating in the face of misunderstandings and subtle
bugs. These notes represent my view of how to (learn to) code in Python in
a way that is as efficient as possible in the long run. Please pay attention to
everything here. The parts you already know will be quick reading. Most people
in scientific computing have little formal training in coding, beyond a possible
low level college class.

You need to be a good programmer to be good at scientific computing.
You should understanding the language and software you’re using. I have seen
students lose much time trying to code something using trial and error from
“how to” samples on the internet. You should always keep in mind quirks
of numerical computing, such as the fact that numbers in the computer are
(almost) never equal to the values in mathematical formulas. You should have
a clear set of good programming practices that you follow always, even when
they seem to slow you down slightly. These save time in the long run.

These notes are an introduction to Python programming designed for people
learning to do scientific computing in Python. They describe the basic principles
of the language in a way that for dummies descriptions may not. Experience
shows that most new scientific Python programmers make serious coding errors
(bugs and coding choices with serious negative consequences) as a result of
learning by example, by imitating Matlab or C++, or from “for dummies”
tutorials. Even if you think you know enough Python to get by, you should
check that you understand the points made here. If you are in one of my
classes, points will be deducted from your homework scores if your codes violate
some of the coding practices listed here.

Python is a programming language well suited for lightweight computing.
It has good productivity, meaning that it takes less time to code and debug in
Python than, say, in C++ or FORTRAN. One way Python becomes lightweight
is by making inferences about your intentions that C++ or FORTRAN force
you to to “tell” the compiler. This forces the Python interpreter (the app that
runs your Python code) to look up or infer the types of variables every time
they are used. Such work done “under the hood” (referring to the moving parts
“under the hood” of a car) often takes more time than the arithmetic operations
that constitute most computational algorithms. If your code is very slow, find
ways to make the computer do less of this.

1

You are not a dummy.
Don’t program like one.

2 Getting set up

There are different environments for developing and running Python code. “For
dummies” IDE environments can be easy to set up, but I urge you to avoid them
while you are learning Python. Instead, code using three or four basic tools: a
command line terminal window, a text editor (preferably but not necessarily, a
“smart” one that gives Python specific colorings), a displayer for viewing plots
in .pdf format, and (possibly) a window based file manager. More substantial
computing projects, especially those involving more than one person, usually
use a code management tool such as git.

If you use an Apple computer running a version of MacOS, a command line
terminal window app called terminal comes with it. To use it, you will have to
learn some UNIX commands such as cd and ls (possibly only these two!), and
the structure of a UNIX file system. Xcode is an Apple supplied set of coding
tools that includes a (somewhat) smart code editor. You may have to download
it from Apple, but it’s free. You may have to download and install a new version
of Python together with the basic packages (numpy, scipy, matplotlib, etc.).
You may have to manipulate your PATH variable so that the command python

finds your downloaded Python rather than the “native” Python that comes with
MacOS. This is because the native Python does not “see”’ the packages that
are necessary for scientific computing. Find an expert (instructor, classmate,
older student, probably not an Apple store “genius) to help you with this. You
can view a .pdf file by opening the icon of the file in file manager window, or
by using the open command in the terminal window.

If you use a Windows operating system, you either can use the Windows OS
terminal window or you can download the Unix emulator app cygwin. Many
people prefer the cygwin and Unix environment to the native Windows environ-
ment. You also need to download and install a Python environment with the
important packages.

Many hardcore developers, but a minority of students, prefer a pure Unix
operating environment such as Red Hat Linux. This has the advantage that
MacOS and Windows junk does not get in the way as much. For those who
otherwise would use Apple systems, the Linux approach is less expensive because
it does not require Apple hardware (a Macbook). The disadvantage is that you
have to know how to get the other tools you need and there are fewer experts
to help you when you get stuck.

I discourage students from using Jupyter notebooks. As with other IDE
systems, this seems to make certain basic operations quicker and simpler. But
it also implicitly discourages automation and using combinations of tools. For
most students, working with collections of files (modules) seems to lead to better
organization and understanding of your code. I will not accept assignments in
the form of Jupyter notebooks.

2

3 Commands and the environment
sec:Commands

I urge scientific computing students to work at the command line of a terminal
window, at least at first, rather than using an integrated IDE. The file structure
of the operating system (Windows or Unix like) will help you organize Python
modules and run output into directories (folders). Individual specialized tools
will allow you to visualize and organize files.

A simple text editor will allow you to create and modify Python modules.
I use the “code aware” editor xcode on my Mac laptop, but there are other
editors for Mac, or Windows or Linux platforms that many people prefer. I
might have an editor window open on my desktop for each module I’s working
on. A single terminal window, set to the correct working directory or folder, lets
me run (interpret) a module by typing at the command line prompt: python

[moduleName].py. The output will be displayed at the command line or put
into plots. I look at the output, edit a module, and run again by simply typing
↑ [enter] (to re-run the most recent command).

The python app is an interpreter that evaluates (“interprets”) Python com-
mands in an environment. Figure

fig:commandLine
1 illustrates the process. It is a “conversation”

between me (the user) and the computer at a terminal window. It’s worthwhile
to follow this, even if you have lots of experience with Python or Matlab or R,
especially if you are not used to using the bare command line version. I usually
urge people to use modules rather than typing directly “at the command line”
like this, but you need to understand the command line to understand modules.

The top line started with the general prompt from a terminal window run-
ning (for me) the Mac operating system OSX:

[JonathansMBP20:∼] jg%

I typed

python3 [return]

This is a command to the OSX operating system to start the Python interpreter.
It printed two lines of information and then the prompt

>>>

I typed a command to the interpreter

2 + 3 [return]

The interpreter answered: 5. At the next >>> prompt I typed x = 2. The
interpreter created a name, x, and bound this name to the value 2. [Names,
binding, and values are explained more below.] At the next >>> prompt, I
typed the expression x. The interpreter evaluated that expression by finding
the value bound to the name x, which is 2. My next command created a new
name, y and bound it to the value 3. After that, z = x+y made the interpreter
create a new name z and bind it to the value it got by evaluating the expression
x+y, which is 5.

My next command was

3

x = "Hello"

The name x did not need to be created, but the interpreter created a new
object "Hello", which is a string made of the characters H, e, etc. [We call
numbers values and other things objects, but the mechanism for handling them
is the same.] C++ and Fortran programmers, pay attention to this: unless you
tell the interpreter otherwise, a name can be bound to an object of any type. At
one point, x is bound to a number or a string or any other kind of object. Don’t
assume x “is” (is bound to) a number. The next command bound y to the string
"world. After that, the + between these strings catenates (“concatenates” would
be the correct English word) the strings, putting the second after the first. This
illustrates the principle that the meaning of an operation symbol, such as +,
depends on the types of the objects it “operates” on. The name z was bound to
this “catenated” string. The command z tells the interpreter to print (the print
value of the object bound to by) z. The result was ’Helloworld’. This was
a bug because I forgot to leave a space. I corrected that by adding a comma
followed by a space character to the string x and now the concatenated string
is correct.

Figure 1: Python commands on the command line. fig:commandLine

Here is some more detail about what the interpreter does. A command
may have effects and side effects (effects that are less obvious), some of which
change the environment. The environment consists of names, which are bound
to objects (values). The local namespace is a list of names that are accessed
directly by the interpreter. An expression is part of (or all of) a command that
can be evaluated by the interpreter. Evaluation involves finding the objects

4

(values) that the names refer to (are bound to) and doing what the expression
says to do with them. This gives the value of the expression.

Figure
fig:dir
2 is session with the Python interpreter at the command line. The

first line started the interpreter, as before. I typed the command dir() (“dir”
is for “directory” and the parens () tell the interpreter that it’s a function.)
The interpreter returned a list of names in the local namespace, which is

[’ anotations ’, etc.]

The interpreter puts these names into the local namespace when it starts up.
They don’t mean much to people who are not Python experts.

Executing a command involves evaluating expressions, which consist of names
and operations. The command x causes the interpreter to find the object that
the name x is bound to and print the value of that object. In this case, the name
x is not in the local namespace, so the interpreter returns the error message:
Traceback ... name ’x’ is not defined. Then, as in the first session, I
typed a command that defined the name x and bound it to the value 2. After
this, the dir() command shows that the name x has been added to the local
namespace (the last name in the list of names). The command x then “executes”
(in interpreted by the interpreter) normally and produces the value 2.

Figure 2: Typing at the command window, variables and names fig:dir

4 The Command Line, Files and Modules

A Python module is a file ModuleName.py that is a sequence of Python com-
mands. Instead of typing a sequence of commands directly to the Python in-
terpreter, you can put them into a file using a text editor (see below). The
command line command: python [ModuleName].py has almost the same effect
as typing the commands, one by one, to the interpreter. The difference (one of
the differences) is that if you make a mistake, you just fix it in the text editor
and try again. You don’t have to re-type the sequence of commands.

A difference between typing commands one by one and putting them into
a module is that a command that consists of an expression does not cause the
value of the expression to be sent to the terminal window. The command at
line 6 in the module, x, does not cause the value bound to x to appear at

5

the terminal. Instead, a module can use the print() function. The command
print(StringExpression) causes the string that is the value of the string ex-
pression to be printed at the terminal.

Figure
fig:PrintDemo
3 illustrates this. The top of the figure shows a code editor (xcode)

with the file PrintDemo.py open in it. This file is a sequence of commands.
Lines 1 to 3 are comments. Line 4 is blank, to make the module easier to
read. Lines 5 and 6, if typed directly at an interpreter prompt, would have
led to the output 2 from the interpreter. Line 7 is a print() command with
the expression "You ...". It causes the value of this expression, which is the
string, to be printed in the terminal window. Line 11 uses the Python function
str() (“str” is for “string”), which returns a string that represents the value of
its argument. In this case, the argument in the integer 2. What is returned is
the string “2”.

The bottom part of Figure
fig:PrintDemo
3 shows the command line execution of a Python

module. At the (silly long) command line prompt: [Jonathan... jg%, I
typed python3 PrintDemo.py. This ran the command python3 with argument
PrintDemo.py. The command takes its argument to be a Python module and
executes the commands in the module one by one. The results of the print()

commands appeared at the terminal as they were executed by the Python in-
terpreter. You can see that the Python command x (line 6 in the module) did
not cause anything to be printed at the terminal window. The command at
line 11 causes the one character string “2’’ to be printed at the terminal. This
demonstrates that the command of line 5 was executed by the Python inter-
preter. You can see that the last line of output: “x has the value 2” might
be more helpful to the person running the module than just “2” above it.

6

Figure 3: A Python module that prints “to” the terminal command window.
Top: the module PrintDemo.py in a text editor window. Bottom: interpreting
this module at the command line. The text editor is “code aware” in that it
understands Python well enough to use different fonts and colors for different
kinds of code. The comments at the top are dim. The strings are in red. fig:PrintDemo

Figure
fig:Desktop
4 illustrates working with a Python “program” consisting of several

modules. There are five open windows in this desktop. Three of them are
modules, which are described in Section

sec:Namespace
5. One is a file manager open to this

directory. It shows the Python modules and some other files related to the
first week of Scientific Computing. One is a terminal window with a command
line. This shows that I have “navigated” through the file directory (folder)
hierarchy to get to the directory with the code I was working on. The last
think in the terminal window is using the Python interpreter to run the module
ModuleMechanics.py, which is explained in Section

sec:Namespace
5. The point here is that

this setup is as convenient as an IDE in terms of seeing all the code files, but it
is more convenient in terms of “knowing where you are” (what directories files
are in) and using the same apps (file manager, terminal, text editor) that you
use for other purposes. You don’t have to learn a new set of editor instructions
for each new language.

7

Figure 4: Picture of a desktop illustrating Python coding at the command
line. There are three text edit windows (xcode), the command line window
(terminal), and a file manager window (filemanager). fig:Desktop

5 Namespaces, Importing, numpy
sec:Namespace

A namespace in Python is something like a directory (folder) in a file system.
It is an object that contains a list of names. Each name in a namespace is
bound to an object in the same way names in the local namespace (Section
sec:Commands
3) are. Look at the ModuleMechanics.py window in Figure

fig:Desktop
4. Line 5 of this

module (import VariableDefinitions as vd) creates a name vd and binds it

8

to a namespace object. The command: import [module] as [name] tells the
interpreter to execute the commands in the file names [module].py, and to put
all the resulting names into the namespace [name]. A namespace name often is
a two or three letter abbreviation of the name of the module, as vd abbreviates
VariableDefinitions. The module VariableDefinitions.py is open in the
top left window of Figure

fig:Desktop
4. You can see that executing this module will create

four names, x, pi, n, k. The interpreter puts these names into the namespace
vd. After this, commands in the module ModuleMechanics.py can access these
names using vd.[name]. For example, line 18 of ModuleMechanics.py has the
name vd.x, which is the name x in the namespace vd. Line 7 of the module
VariableDefinitions.py binds this name to the string "I am x. The name
x in the namespace vd and the name x in the local namespace are different,
and they are bound to different objects. The output line: The x string from

.... in the terminal window of Figure
fig:Desktop
4 shows that vd.x is bound to the string

I am x, not 2. Line 19 of ModuleMechanics.py illustrates this again. Line 20
is another example of printing a number with an explanation (ratio is) after
creating a string to represent the number (str(ratio)).

Lines 16 and 17 of ModuleMechanics.py illustrate the namespace mecha-
nism. The function dir() returns a list of all the names in the local namespace.
Line 17 creates a printable version of this list. The command print(dir())

generates an error message, because dir() returns a list, not a string. The
output from the print command, in the terminal window of Figure

fig:Desktop
4, shows the

names we got in Figure
fig:dir
2, plus the mane vd. This is the name that the import

command added to the local namespace.
The bottom left window of Figure

fig:Desktop
4 contains a file ModuleTemplate.py.

This illustrates something I do to create good new modules easily. I make a
copy of the “Template” module and rename it. This saves me from having to
reproduce the header information (comments at the top). I also could create a
new �.py file and copy/paste a header from an existing module, but xcode makes
it harder to create new files than to copy existing ones. A requirement for the
Scientific Computing class is that every module have a header that identifies the
author, dates the file, states the purpose, and (if necessary) gives more history
(created, modified, adapted, ...).

The core Python language lacks many things that are necessary for scientific
computing. The module numpy supplies many of these. A module or collection
of modules supplied by someone else is a package. By tradition, you import this
into the namespace np by putting, early in your module, import numpy as np.
A web search on python numpy will point you to detailed documentation of the
numpy package.

Figure
fig:Numpy
5 illustrates the numpy package. Line 5 tells the interpreter to execute

the commands in the numpy.py module (it knows how to find that module)
and put the names created into the namespace np. Some of these names are
bound to (“point to”) objects that are functions, such as the function sqrt()

in the namespace np that is used on line 14. Other names point to objects
that are numbers, such as the name pi used on line 22. [Hint: Don’t type in

9

π = 3.1415826 . . . yourself. The value in numpy is more accurate and doesn’t
have a typo.] Numpy also defines objects that act like mathematical vectors and
matrices. Line 34 makes x point to a vector of length n. The function zeros()

(in the namespace np) creates this vector and sets the values to zero. The part
dtype = np.float64 tells zeros() that the entries of x are double precision
(64 bit) floating point numbers. Core Python has a list data type that looks
similar to a numpy array, but it is very different. Do not use a list for a
mathematical vector or matrix. This course will explain some of the reasons
not to. One is illustrated on line 43: there is a matrix/vector multiply function
defined for numpy arrays that does not work for core Python lists. Note that
the output that uses the simple str() function (bottom of Figure

fig:Numpy
5) is hard to

read.
A function (prodecure, subroutine, method) is a type of Python object. A

name bound to a function object can be in any namespace. For example, line
23 of Figure

fig:Numpy
5 has the name sin in the namespace np. As a function, it takes

arguments, which go in the argument list after the name. The argument list
here is (theta), and theta is a name bound to a number representing the
angle θ. Lines 34 and 35 refer to the function zeros in the namespace np. The
argument list starts with a shape, either [n] for the vector or [n,n] for the
matrix. The second argument is a keyword argument, which is another name
in the np namespace. The name float64 is bound to an object telling numpy
to use double precision floating point numbers. A keyword argument takes the
form [name]=[value]. In Line 34, the name is dtype (for “data type”) and
the value is np.float64 (the value of float64 in namespace np). You can look
up more about positional arguments (the usual kind) and keyword arguments.
Routines for making plots typically have a lot of keyword arguments that allow
you to fine-tune a plot.

Lines 65 and 66 illustrate that the same name (pi in this case) can be in
more than one namespace, just as the same filename can appear in more than
one directory (folder). When that happens, the names are usually bound to
different objects. Line 65 puts the name pi into the local namespace and binds
it to the value 3.1415926535. The numpy module creates the name pi and gives
it a more accurate value. Line 66 prints the difference, which is small but much
larger than double precision roundoff error.

10

Figure 5: Illustration of some features of the numpy package. The top is the
module and the bottom is running it at the command line. fig:Numpy

11

6 Objects, mutable and immutable

The Python relation between names and objects is different from other inter-
preted languages such as Matlab and R. Look at Figure

fig:NoCopy
6. In Matlab or R, line

12 would copy the entries of vector x into a new vector called y. In Python,
line 11 changes the value of x[0] and also changes the value of y[0]. This is
because x and y are different names bound to the same object. Here is a quick
over-simplified explanation. You can find a more accurate version in a fuller
discussion of Python.

Every name in Python is bound to an object. Objects contain information,
numbers, strings, matrix entries, etc. Names are used to identify objects. A
simple assignment command (“statement”) in Python takes the form: [name] =
[expression]. The interpreter evaluates the expression on the right and produces
an object that is (or contains) that value. The assignment part, the = sign,
tells the interpreter to bind the name on the left to that object. For example,
greeting = "Hello " + "world" creates two strings ("Hello " and "world")
and then creates a new string object by concatenating these. The result is an
object that is (contains) the string "Hello world". The name greeting is then
bound to that object.

Figure
fig:NoCopy
6 illustrates the fact that more than one name can be bound to the

same object. Each object has its unique object id, which is returned using the
id() function. Lines 15, 16, and 17 print the ids of the objects pointed to by
names x, y and z. The output (command line output at the top of the figure)
shows that x and y point to the same object, while z points to a different object.
To understand when this can happen, you should know the difference between
mutable and immutable objects in Python.

An object is mutable if a command can change it after it has been created.
For example, line 37 of Figure

fig:Numpy
5 changes the object A by changing the value of

the (i, i) entry Aii. It does not create a new object. Line 37 is not a simple
assignment command because the left side is more than just a name. It is
the name, A, followed by an index reference, [i,i]. Executing this command
changes (“mutates”?) the existing object without creating a new one. This also
happens in line 11 of Figure

fig:NoCopy
6. There, the object point to by x is changed (first

entry changed from 0 to 2) but the object itself is not created and keeps its object
id. Since the name y is bound to this same object, the value of y[0] continues
to be the same as the value of x[0], which is now 2. The immutable types are
(mainly) numbers and character strings. The mutable types are (almost) all the
more complex data types, including numpy arrays, lists, dictionaries, etc. As a
general rule, a simple assignment (such as lines 7 and 9 in Figure

fig:NoCopy
6 create new

objects while more complex assignments (like line 11, changing one component
of the vector), modify an object without creating a new one. If in doubt, try
printing the object id numbers.

There are commands to create a new object with the same data as an exist-
ing object. The numpy function array(), line 10 of Figure

fig:NoCopy
6, is an example. It

creates a new array of the same size and shape (on column with n entries) as x
with the same numbers in the entries. Line 43 of Figure

fig:Numpy
5 also creates a new ob-

12

ject. It is a simple assignment, though not with a simple data type. Evaluating
the right side, which is a numpy array that contains the matrix/vector product
A@x. The name y is bound to this object. The command x = A@x evaluate the
matrix/vector product and bind the name x to the result. The old vector object
would be lost.

The rules for copying objects in Python are complex and subtle. At least in
the beginning, it will suffice to copy numpy arrays using the array function or by
first creating the new array (using zeros() for example) and then copying the
entries. If you want to, you can learn more by exploring the Python deepcopy

package.

Figure 6: Names x and y are bound to the same object. The command window
output is at the top. The object id numbers printed there show that the names
tt x and y point to (are bound to) the same object and name z is bound to a
different object. fig:NoCopy

7 Output formatting

Figure
fig:format
7 presents a computational experiment regarding the function f(x) =

ex−1. It shows that the direct formula (line 29) has low relative accuracy when
x is small. This is an example of catastrophic cancellation discussed in Week
1 (this week). The most interesting part (to me) is left out. It is the fact (see
homework exercises for Week 1) that the formula f(x) = x+ 1

2x
2+ 1

6x
3 can have

better relative accuracy when x is small. In this experiment, we use the Taylor
series to n = 20 terms as the exact answer. It is accurate to double precision
floating point accuracy for the x values in the experiment and it does not suffer
from cancellation.

Output formatting is a detail that at first ay seem like a waste of time. It
pays off in the long run. Normally, you spend more time looking at output from
a code than you spend writing it. Lining up numbers, as in Figure

fig:format
7 makes

them easier to compare, as in the bottom part of the f(x) column of the output
(try to spot and explain the pattern). Figure

fig:Numpy
5 has some unformatted Python

output. The numbers are easy to make out when there are just a few simple
numbers. But unformatted output from more complex computations can be
hard to read.

Python has gone through several output formatting systems. Here is a quick
partial explanation of one of the less bad ones. The Python documentation has
more detail, including all number formats. Lines 39 and 40 of Figure

fig:format
7 show

13

the basic idea. You define a string (character string) that contains formatting
that will be replaced by the actual numbers. The formatting instructions are
in “curlies” (curly braces {}) in the right side of line 39. Line 40 says which
numbers are formatted into which place in the string.

The syntax for formatting instructions is

{[name]:[format code]}.

The first one is {x:10.3e}. The name is x. This will be bound to a floating
point number in line 40. The format code is 10.3e. This is a description of
how the floating point number x will be represented in the output. The 10
means that the whole thing takes ten characters. These include the possible
sign, the digits, and the exponent. The 3 means that there will be three digits
after the decimal point. The e at the end is for “exponential format”. The
first number in the error column is -8.327e-17. This refers to −8.327 · 10−17.
The three digits after the decimal point are “327”. The decimal points line up,
which makes it easy to glance down this column and see that the numbers have
fluctuating signs and near the 10−17 range in magnitude. Characters that are
not used by the formatting will be blank and can be used for spacing. All ten
characters are used in this case (count them), but if had been {x:12.3e} there
would have been two blanks.

The right side of line 40 refers to the name format in a namespace associated
to the string outputString. The name format is bound to a function that
formats its arguments according to the directions in the string. Any object of
type string comes with a namespace that contains the name format. This is
part of the definition of the string datatype in Python. You can learn more
about this by reading about classes in Python. For now, it is enough to know
that line 40 applies the format function to the string outputString using data
in the argument list (x = x, val = g, · · ·). It returns an object that is a
string with the format instructions replaced with the formatted numbers. The
name outputString is bound to this new string. Line 41 prints it, resulting in
the data lines in the output table.

The arguments to format on line 40 are all keyword arguments. The end
of Section

sec:Namespace
5 describes these a little. The keywords go into a namespace for the

function call. The first one is x = x. In my (computational mathematician)
mind, the two x names are the same because they refer to the same number.
In Python, they are in different namespaces and therefore can refer to different
objects. The first x is a name in the unnamed namespace for the function
format. The second x is in the local namespace and is bound to the value that
the first x will be bound to. The second keyword is val, and val = g binds this
name to the value of g in the local namespace. Among other things, the this call
to the format function will format the value of val in the argument keyword
namespace using the format code 20.17f. The results are in the second output
column.

You choose the format for formatted output to make it easy and quick to
learn about the numbers you are printing. Print what you want to know and

14

don’t print what you don’t want to know. Don’t print a lot of digits that don’t
matter. They just get in the way.

In this example, the f(x) column prints 17 digits (roughly double precision
accuracy) to bring out the pattern that is obvious in all but the first few rows.
The error and relative error columns print just three (and even three may
be too many) because we just want to know roughly how big these numbers are.

15

Figure 7: A demonstration of formatted output in a table. fig:format

16

