
Scientific Computing, Courant Institute, Fall 2021

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2021/index.html

The matrix exponential

For Assignment 3

This explains the matrix exponential and three ways to calculate it. The
methods are illustrated in the posted code MatrixExponential.py. You should
open this module in a code editor that shows line numbers.

If L is a d×d matrix, then eL is the matrix exponential. This may be defined
using the Taylor series that is the matrix version of the ordinary Taylor series
for ea one learns in calculus:

ea =

∞∑
n=0

1

n!
an

eL =

∞∑
n=0

1

n!
Ln . (1)

We call ea the scalar exponential to distinguish it from the matrix exponential.
You can see that the Taylor series for the matrix exponential converges by
comparing the terms to the corresponding terms in the scalar exponential series
with a = ‖L‖. ∥∥∥∥ 1

n!
Ln
∥∥∥∥ ≤ 1

n!
‖L‖n .

You can check that if 0 is the d × d matrix of all zeros, then e0 = I. It is not
as obvious, but still true, that the inverse of eL is e−L, as it is for the scalar
exponential.

You can replace L by tL, for a real (or complex) number, t. This gives the
matrix group (sometimes called semi-group because only t ≥ 0 is allowed for
some infinite dimensional problems that are not part of this course)

S(t) = etL . (2)

A group, in mathematics, is a collection of things that can be multiplied and
inverted. The non-zero real or complex numbers form a group, as to the set of
all invertible d × d matrices. For any fixed matrix L, the matrices S(t) = etL

form a group. You can check (it’s not easy, but it is possible) that

S(t1)S(t2) = S(t1 + t2) . (3)

This is like the scalar exponential formula et1aet2a = e(t1+t2)a. However, the
general product formula is not true

eA+B 6= eAeB , except in special cases.

1

https://www.math.nyu.edu/~goodman/teaching/ScientificComputing2021/MatrixExponential.py

In fact, there is the Baker Campbell Hausdorff “formula” (really, approximation)

et(A+B) = etAetBe
t2

2 (BA−AB)+O(t3) .

This formula is not important for this course right now, but it illustrates a
difference between scalar and matrix exponentials, and it is easy to verify using
the Taylor series formulas.

The matrix exponential arises as the solution of a linear system of differential
equations. Suppose the variable x(t) has d components, as

x(t) =

x1(t)
...

xd(t)

 .

A system of linear differential equations takes the form

d

dt
x(t) = ẋ(t) = Lx(t) . (4)

The solution may be given using the fundamental solution, S(t), which is a d×d
matrix that satisfies

Ṡ(t) = LS(t) , S(0) = I . (5)

Any vector solution is given by x(t) = S(t)x(0), which you can verify by differ-
entiating:

d

dt
x(t) =

[
d

dt
S(t)

]
x(0) = LS(t)x(0) = x(t) .

In this context, L is called the generator of the matrix group, which is the
collection of matrices S(t). You can check that the fundamental solution is
given by the matrix exponential. One way is to show that the Taylor series
formula satisfies the differential equation:

d

dt
etL =

d

dt

(
I + tL+

t2

2
L2 +

t3

6
L3 + · · ·

)
= L+ tL2 +

t2

2
L3 + · · ·

= L

(
I + tL+

t2

2
L2 + · · ·

)
= LetL .

This shows that if S(t) is the matrix exponential (2), then S(t) satisfies the fun-
damental solution equations (5). Of course, the scalar exponential solves a one
component linear differential equation in the same way. The matrix exponential
also works for “row” differential equation systems as in the assignment.

d

dt
p(t) = p(t)L =⇒ p(t) = p(0)S(t) = p(0)etL .

2

There are several ways to compute the matrix exponential numerically, but
there is no universally best way. In fact, Cleve Moler (scientific “father” of
Matlab) and Charles Van Loan (prominent researcher and co-author of the
textbook Matrix Computations) have a long list of methods for the ma-
trix exponential, all of them “dubious” (inferior to other methods in some
cases). Here are three of them. They are implemented in the Python module
MatrixExponential.py. If you can, open this file in a code editor that shows
line numbers.

The direct method would be to sum the Taylor series (2). For this, you have
to decide how many terms to take. One drawback is that you might have to
take many terms and you have to do a matrix multiply for each term. Work
for n terms is on the order of nd3, which is more than the other methods.
Another issue is cancellation, which happens even for the scalar exponential.
For example,

e−t = 1− t+
t2

2
− t3

6
+ · · · .

If t is a large positive number, it takes a lot of cancellation from big terms
on the right to get the small answer on the left. Numerically, this leads to
amplification of roundoff error. The function meT (starting on line 32) does this
Taylor series sum directly. A fancy version of this would estimate the number
of terms needed, possibly by computing the norms of the terms and stopping
when they’re within a specified tolerance.

The function med (for “matrix exponential differential equation”) computes
the matrix exponential in two steps. First, it estimates S(∆t) for small ∆t using
just a few terms of the Taylor series. Later in the semester, we will see that
this is equivalent to applying a Runge Kutta method to the differential equation
system (5). This particular routine uses

S(∆t) ≈ I + ∆tL+
∆t2

2
L2 +

∆t3

6
L3 +

∆t4

24
L4 .

The error in this is order ∆t5, which can be quite small even if ∆t is only a little
small. The routine computes this approximation using Horner’s rule. Horner’s
rule computes a polynomial starting with the highest order term, as

a0 + a1t+ a2t
2 + a3t

3 + a4t
4 = a0 + a1t+ a2t

2 + a3t
3

(
1 +

a4
a3
t

)
= a0 + a1t+ a2t

2

(
1 +

a3
a2
t

(
1 +

a4
a3
t

))
...

= a0

(
1 +

a1
a0
t

(
1 +

a2
a1
t

(
1 +

a3
a2
t

(
1 +

a4
a3
t

))))
.

The algorithm first computes

m4 = 1 +
a4
a3
t .

3

http://www.cs.cornell.edu/cv/ResearchPDF/19ways+.pdf
http://www.cs.cornell.edu/cv/ResearchPDF/19ways+.pdf

Then it computes

m3 = 1 +
a3
a2
tm4 ,

and so on until the final answer, in the form

m0 = a1m1 .

Line 24 computes this for the Taylor series.

S(∆t) ≈ I + ∆tL

(
I +

∆t

2
L

(
I +

∆t

3
L

(
I +

∆t

4
L

)))
.

A small advantage is that you have 1
n instead of 1

n! .
The product formula (3) implies that if t = n∆t, then

S(t) = S(∆t)n .

This takes an approximation to S(∆t) and gives an approximation of S(t). You
can compute a high power of a matrix by repeated squaring.

A −→ A2 = A ·A −→ A4 =
(
A2
)
·
(
A2
)
−→ · · · .

You can calculate An with n = 2k using just k = log2(n) squarings. If n is not a
simple power of 2, there is a more complicated algorithm that builds up An by
multiplying A2j for the right numbers j. The result is An using at most 2 log2(n)
matrix multiplies. The function med chooses n = 2k for simplicity. The loop in
lines 28 and 29 computes the squares. This algorithm is less dubious than the
direct Taylor series summation of the function meT because it uses fewer matrix
multiplications and because it suffers less from cancellation. However, for easy
problems it achieves less accuracy than the Taylor algorithm because it requires
small ∆t to achieve high accuracy. This calls for a lot of squarings.

The function mee (for “matrix exponential eigenvalue”) uses the eigenvalues
and eigenvectors of L. The eigenvalue decomposition may be written

L = RΛR−1 ,

where R is the matrix of right eigenvectors and Λ is a diagonal matrix with the
eigenvalues. The numpy package comes with a sum-package linalg that does
linear algebra calculations like this. Line 6 imports the names and definitions
from numpy.linalg into the namespace la (for “linear algebra”). The function
eig in this package computes the eigenvalues and eigenvectors. Line 10 calls
this function (from the la namespace). It returns a Python tuple, with the
eigenvalues as a numpy array and the eigenvector matrix. The matrix exponen-
tial has the same eigenvectors as L and the corresponding eigenvalues are etλjt.
Line 13 constructs a diagonal matrix with these numbers on the diagonal. Then
line 14 computes the product

etL = R

(
etλ1 0

0
. . .

)
R−1 .

4

The inverse R−1 is computed by the inv function from linalg.
Many functions of a matrix may be computed using its eigenvalue/eigenvector

decomposition. For example

L2 = L · L =
(
RΛR−1

) (
RΛR−1

)
= R

(
Λ2
)
R−1 .

The matrix Λ2 is (check this!) is the diagonal matrix with λ2j on the diagonal.

That is, L2 has the same eigenvector matrix as L, and the eigenvalues are λ2,
More generally, if f is “any” function suitable function, f(L), then f(L) has the
same eigenvectors as L and the eigenvalues are f(λ). For example,

4L2 + L3 = R ·
(
diag(λ2j + λ3j)

)
·R−1 .

You should check this for yourself.
The same reasoning applies to the Taylor series (1). You get

etL =

∞∑
n=0

tn

n!
Ln

=

∞∑
n=0

tn

n!
R (Λn)R−1

= R

[∞∑
n=0

tn

n!
Λn

]
R−1

= R

[
diag

(∞∑
n=0

tnλnj
n!

)]
R−1

etL = R
[
diag

(
eλjt

)]
R−1 (6)

(7)

The matrix exponential is found using the ordinary exponential of the eigen-
values. Keep in mind that a real matrix may have eigenvalues and eigenvectors
that are not real. In fact it usually does unless it has a reason not to. The left
side of (6) is all real and the formula (1) is all real, but the right side of (6)
has complex R and λj . Somehow, the imaginary part comes out to be zero. In
computer arithmetic, the imaginary part will be on the order of roundoff, not
zero. You will have to take the real part explicitly if you want a real result.
Python automatically switches from real to complex numbers in situations like
this, so you will have to cast the result back to real, using, for example

S = np.real(S)

In the code, you will see complex eigenvalues when you print them, even the
eigenvalues are (mathematically) real.

5

