Scientific Computing, Courant Institute, Fall 2021
http://www.math.nyu.edu/faculty /goodman/teaching/SciComp2021/index.html

Fourth assignment

updates. Exercise 1 reworded and corrected. The function in Exercise 2 cor-
rected.

1. (Affine invariance is an important robustness property for multi-variate
optimization and root-finding.) An affine change of variables in n dimen-
sional space is given by y = Ax + b with A an invertible n X n matrix and
z and b in R™. A linear transformation is an affine transformation with
b = 0. In high school algebra, a line y = ax+b is an affine function (in the
present terminology), and linear only if b = 0. We usually take b = 0, but
call the transformations “affine” anyway. Affine changes of variable are
used in practical optimization to improve the conditioning of the problem.
In that context, they may be called pre-conditioners.

Suppose T = ®(z, V') represents an optimization algorithm that takes a
current iterate x; and a function V' and produces a new iterate xy11 =
®(xp, V). An affine preconditioner y = Az changes the objective function
V(z) to Va(y). We want the function values to be equal, which is V4 (y) =
V(z), if y = Az. This may be written either as V4(Ax) = V(z) or as
Va(y) = V(A™'y). An algorithm is affine invariant if it does the “same
thing” in the z and y variable. More precisely, if y = Az, then § = AT,
or yr, = Ary = yYr+1 = Azpy1. If you apply the iterate function ¢
at the point y = Az using the objective function V4, you should get
the “same” iterate as if you applied the iterate function at x using the
objective function V. Written more fully, this is

AD(z, V) = ®(Axz,Vy) .

[The left side is AT, and the right side is .| Proper mathematical termi-
nology would call this affine “covariance”, but people in the business say
“Invariant”.

(a) Show that gradient descent is not affine invariant.

(b) Give an example where affine preconditioning improves the conver-
gence rate of gradient descent a lot. (This is theory — show that the
convergence is faster but don’t code it. If your theory is right, your
code would do what your theory predicts.)

(c) Show that simple Newton iteration xy1 = H(zx) " 'VV (zy) is affine
invariant. Conclude that Newton’s method does not need or benefit
from affine preconditioning.

(d) Asexplained in class, there is a modified Cholesky version of Newton’s
method that uses L |D| L! in place of H in Newton’s method. That is
Tp41 = xp— (L |D] Lt)71 VV (xy). Show that this method is invariant
under diagonal scalings, which means invariant (covariant) in the
sense above if A is a diagonal matrix.

2. (Exercise 6.3 from the book) Consider Newton’s method for solving the
equation f(x) = 0 with f(z) = x/v1+a2. Show that, without safe-
guards, it gives g1 = xz

(a) Show that unsafeguarded Newton’s method converges to the solution
if the initial guess satisfies |z9| < 1 and fails to converge to the
solution otherwise.

(b) Explain the fact that the convergence is cubic rather than quadratic.

3. (nothing to hand in for this one) Do a web search on “newton’s method
mandelbrot set” and look at the pictures. These show that the basin of
attraction of Newton’s method can be very complicated.

4. Write an optimizer to minimize f(z) using a safeguarded Newton’s method.
The optimizer should use functions (defined in other modules, proba-
bly) that supply f(z), Vf(z), and H(z). The “bare” locally convergent
method is

Th+1 — Tk — H(xk)_IVf(xk) .

The two safeguards are

e Descent direction using modified Cholesky. Use the scipy routine
that computes the LDL! composition (called LDLH because it’s the
hermitian conjugate of L, not jus the transpose). Replace the diago-
nals d; with |d;| and call the resulting diagonal matrix |D|. Replace
H = LDL' with H = L|D|L".

e Line search. The search direction is p = —H 'V f- Do a binary
search to find s > 0 with f(x + sp) < f(z).

Try your algorithm on some test functions starting from good and from
poor initial guesses (you decide exactly how much of this to do). Try
it with and without safeguards to see when the safeguards “rescue” a
computation that would have failed otherwise. Make sure your code does
not have infinite loops anywhere. Possible test functions include

e f(z) = vz?+1. This is 1D so you can see everything. With a
poor initial guess, and without safeguards, it should fail because the
function is nearly linear for large |z|.

o flx,y) = ear’+b(y—csinkz)® This function has parameters that make

it easy or hard. In the hard case, with a small (but positive) and b
and k large, the contour looks like a winding valley. Make a contour
plot to see.

n n
° f(xl, R 7$n) = Z T + Z [(xk+1 - {L‘k)z + a($k+1 — xk)4].
k=1 k=0
The second sum on the right involves variables g and x,,; that are

not part of f. Take 2o = 0 and x,,+1 = 0. You can think of £k = 1 and
k =n as “boundaries”. Then, 9 = 0 and z,41 = 0 are “boundary
conditions”. You can write the sum as

n—1
x% + ax‘f + Z [(a:kﬂ — xk)2 +a(Tpy1 — xk)4] + xi + axi .
k=1

This is typical of problems that arise in solving some differential
equations. It’s a high dimensional minimization problem, so if n
is large the linear algebra will be expensive (don’t tell Python it’s
tridiagonal). Get a feel for the solution by plotting zj as a function
of k.

