
Scientific Computing, Courant Institute, Fall 2021

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2021/index.html

Fourth assignment

updates. Exercise 1 reworded and corrected. The function in Exercise 2 cor-
rected.

1. (Affine invariance is an important robustness property for multi-variate
optimization and root-finding.) An affine change of variables in n dimen-
sional space is given by y = Ax+ b with A an invertible n×n matrix and
x and b in Rn. A linear transformation is an affine transformation with
b = 0. In high school algebra, a line y = ax+b is an affine function (in the
present terminology), and linear only if b = 0. We usually take b = 0, but
call the transformations “affine” anyway. Affine changes of variable are
used in practical optimization to improve the conditioning of the problem.
In that context, they may be called pre-conditioners.

Suppose x = Φ(x, V) represents an optimization algorithm that takes a
current iterate xk and a function V and produces a new iterate xk+1 =
Φ(xk, V). An affine preconditioner y = Ax changes the objective function
V (x) to VA(y). We want the function values to be equal, which is VA(y) =
V (x), if y = Ax. This may be written either as VA(Ax) = V (x) or as
VA(y) = V (A−1y). An algorithm is affine invariant if it does the “same
thing” in the x and y variable. More precisely, if y = Ax, then y = Ax,
or yk = Axk =⇒ yk+1 = Axk+1. If you apply the iterate function Φ
at the point y = Ax using the objective function VA, you should get
the “same” iterate as if you applied the iterate function at x using the
objective function V . Written more fully, this is

AΦ(x, V) = Φ(Ax, VA) .

[The left side is Ax, and the right side is y.] Proper mathematical termi-
nology would call this affine “covariance”, but people in the business say
“invariant”.

(a) Show that gradient descent is not affine invariant.

(b) Give an example where affine preconditioning improves the conver-
gence rate of gradient descent a lot. (This is theory – show that the
convergence is faster but don’t code it. If your theory is right, your
code would do what your theory predicts.)

(c) Show that simple Newton iteration xk+1 = H(xk)−1∇V (xk) is affine
invariant. Conclude that Newton’s method does not need or benefit
from affine preconditioning.

1

(d) As explained in class, there is a modified Cholesky version of Newton’s
method that uses L |D|Lt in place of H in Newton’s method. That is

xk+1 = xk−(L |D|Lt)
−1∇V (xk). Show that this method is invariant

under diagonal scalings, which means invariant (covariant) in the
sense above if A is a diagonal matrix.

2. (Exercise 6.3 from the book) Consider Newton’s method for solving the
equation f(x) = 0 with f(x) = x/

√
1 + x2. Show that, without safe-

guards, it gives xk+1 = x3
k.

(a) Show that unsafeguarded Newton’s method converges to the solution
if the initial guess satisfies |x0| < 1 and fails to converge to the
solution otherwise.

(b) Explain the fact that the convergence is cubic rather than quadratic.

3. (nothing to hand in for this one) Do a web search on “newton’s method
mandelbrot set” and look at the pictures. These show that the basin of
attraction of Newton’s method can be very complicated.

4. Write an optimizer to minimize f(x) using a safeguarded Newton’s method.
The optimizer should use functions (defined in other modules, proba-
bly) that supply f(x), ∇f(x), and H(x). The “bare” locally convergent
method is

xk+1 = xk −H(xk)−1∇f(xk) .

The two safeguards are

• Descent direction using modified Cholesky. Use the scipy routine
that computes the LDLt composition (called LDLH because it’s the
hermitian conjugate of L, not jus the transpose). Replace the diago-
nals dj with |dj | and call the resulting diagonal matrix |D|. Replace

H = LDLt with H̃ = L|D|Lt.

• Line search. The search direction is p = −H̃−1∇f . Do a binary
search to find s > 0 with f(x + sp) < f(x).

Try your algorithm on some test functions starting from good and from
poor initial guesses (you decide exactly how much of this to do). Try
it with and without safeguards to see when the safeguards “rescue” a
computation that would have failed otherwise. Make sure your code does
not have infinite loops anywhere. Possible test functions include

• f(x) =
√
x2 + 1. This is 1D so you can see everything. With a

poor initial guess, and without safeguards, it should fail because the
function is nearly linear for large |x|.

• f(x, y) = eax
2+b(y−c sin kx)2 . This function has parameters that make

it easy or hard. In the hard case, with a small (but positive) and b
and k large, the contour looks like a winding valley. Make a contour
plot to see.

2

• f(x1, . . . , xn) =

n∑
k=1

xk +

n∑
k=0

[
(xk+1 − xk)2 + a(xk+1 − xk)4

]
.

The second sum on the right involves variables x0 and xn+1 that are
not part of f . Take x0 = 0 and xn+1 = 0. You can think of k = 1 and
k = n as “boundaries”. Then, x0 = 0 and xn+1 = 0 are “boundary
conditions”. You can write the sum as

x2
1 + ax4

1 +

n−1∑
k=1

[
(xk+1 − xk)2 + a(xk+1 − xk)4

]
+ x2

n + ax4
n .

This is typical of problems that arise in solving some differential
equations. It’s a high dimensional minimization problem, so if n
is large the linear algebra will be expensive (don’t tell Python it’s
tridiagonal). Get a feel for the solution by plotting xk as a function
of k.

3

