
Scientific Computing, Courant Institute, Fall 2021

http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2021/index.html

Third assignment

Please write (or type) answers in paragraph form rather than as strict point-
by-point responses to the parts of each exercise. Try to summarize results
or draw conclusions as called for in each exercise. For each exercise, include
printouts of output and a separate printout of each module. You do not need to
re-print modules that are minor variants of each other. Output formatting and
code quality matter. Please upload the module for part (c) of Exercise 3 only.

1. (This exercise gives an example of an unstable algorithm for a well con-
ditioned problem. The algorithm is unstable because it relies on a sub-
problem that is ill conditioned.)

The problem comes from computing probabilities related to a simple hop-
ping process. A hopping process is a random process in which a particle
“hops” between neighboring “sites” at random times. A simple one di-
mensional hopping process “lives” on sites {0, 1, · · · .n− 1} (the integers
between 0 and n − 1, including 0 and n − 1. The location at time t is
X(t), which is a random site. The value of X(t) is one of the integers
0, 1, · · · , n − 1. We say X hops at time t if the value changes at that
time. As a mathematical function, X(t) is “piecewise constant”, with
discontinuities at the time with it hops.

Suppose X(t) = k with 0 ≤ k ≤ n− 1. In a time interval from t to t+ dt,
if k < n − 1, it hops up to k + 1 with probability ru dt. If k > 0, the
particle hops down to k−1 with probability rd dt. If X(t) = n−1, then it
cannot hop up, and if X(t) = 0 then it cannot hop down. The occupation
probabilities are pk(t) = Pr(X(t) = k). There is a small probability of
having a hop in a small interval of time, but if you neglected it then there
would be no hops at all. The probability of more than one hop is even
smaller and (take my word for it) may be neglected.

These probabilities satisfy a system of differential equations derived as
follows. We denote conditional probability using the symbol “|”, so Pr(A |
B) is the probability of A conditional on B. Conditional probability allows
to express pk(t+dt) in terms of pk(t), pk−1(t), and pk+1(t). If X(t+dt) =
k, then X(t) = k (most likely), or X(t = k − 1) and there was a hop up,
or X(t) = k + 1 and there was a hop down. The derivation neglects the
possibility of more than one hop in interval dt. Here is the calculation,

1

which some explanations after:

Pr(X(t+ dt) = k) = Pr(X(t+ dt) = k | X(t) = k − 1) · Pr(X(t) = k − 1)

+ Pr(X(t+ dt) = k | X(t) = k + 1) · Pr(X(t) = k + 1)

+ Pr(X(t+ dt) = k | X(t) = k) · Pr(X(t) = k)

pk(t+ dt) = Pr(hop up) · pk−1(t)

+ Pr(hop down) · pk+1(t)

+ Pr(no hop) · pk(t)

pk(t+ dt) = ru dt pk−1(t) + rd dt pk+1(t) + (1− ru dt− rd dt) pk(t)

pk(t+ dt) = pk(t) + [rupk−1(t) + rdpk+1(t)− (ru + rd)pk(t)] dt .

The basic rule of conditional probability (if you haven’t taken a big prob-
ability course) is that if A is an “event” (X(t+ dt) = k in this case) and
B, C, and D are distinct ways A can happen (B is X(t) = k − 1, C is
X(t) = k, etc.) then

Pr(A) = Pr(A | B) · Pr(B) + Pr(A | C) · Pr(C) + · · · .

The first equality in the derivation is this conditional probability formula.
The probability ofX = k at t+dt is the sum of the conditional probabilities
multiplying the probabilities for the possible values of X at time t. The
second equality says the same thing, using the above terminology and
notation. The third inequality comes from substituting in the hopping
probabilities. The probability of “no hop” is 1 minus the probability of a
hop, which is 1− ru dt− rd dt. The notation is ru for the rate to jump up
and rd for the rate to jump down. The code MatrixExponential.py uses
rl = ru+rd for the “loss rate”, which is the rate to jump out of site k. The
corresponding probability to jump out of site k is rl dt. The probability
not to jump out is 1− rl dt.
These formulas have to be modified if k = 0 (no down hops) or k = n− 1
(no up hops). The modified formulas are

p0(t+ dt) = p0(t) + [rd p1(t)− ru p0(t)] dt

pn−1(t+ dt) = pn−1(t) + [ru pn−2(t)− rd pn−1(t)] dt .

These relations may re-arranged and expressed in traditional calculus no-
tation as

d

dt
p0(t) = − p0(t) ru + p1(t) rd

d

dt
pk(t) = pk−1(t) ruru − pk(t)(rd + ru) + pk+1(t) rd , for 1 ≤ k ≤ n− 2

d

dt
pn−1(t) = pn−2(t) ru − rd pn−1(t)

2

This system if differential equations is expressed in matrix/vector form,
by tradition, using a row vector (not column vector) for the probabilities
p(t) = (p0(1), · · · , pn−1(t)). The matrix form is the differential equations
is

d

dt
(p0(1), · · · , pn−1(t)) = (p0(1), · · · , pn−1(t))

−ru rd 0 · · · 0

ru −(ru + rd) rd
...

0 ru
. . .

. . .
...

. . . rd
0 · · · ru −rd

In matrix/vector form, this is

d

dt
p(t) = p(t)L .

The matrix L is the generator of the random hopping process. You can see
that it is tri-diagonal, with non-zero elements only on the “main diagonal”
and the nearest “off diagonals”.

(a) A diagonal scaling (more properly, diagonal re-scaling) is

L̃ = W−1LW , W = diag(1, w2, · · · , wn−1) .

Show that if W is non-singular, then the eigenvalues of L and L̃
are the same. Find W so that L̃ is symmetric. Conclude that the
eigenvalues of L are real. Show that right eigenvectors of L are not left
eigenvectors. Hint for the last. If Lv = λv, then WW−1LWW−1v =
λv so L̃ṽ = λṽ, with suitable ṽ. [Not to hand in: any sign symmetric
tridiagonal matrix (you supply the definition, allow for zeros on the
off diagonal if you want) is similar to a symmetric tridiagonal matrix
in this way. In differential equations, a Sturm Liouville operator
(second order differential operator in one variable) is similar to a self-
adjoint differential operator, using a diagonal “weighting function”.
Tri-diagonal matrices may be thought of as a discrete analogue of
one-variable second order differential operators.]

(b) The code MatrixExponential.py implements three methods for solv-
ing the matrix differential equations d

dtp = pL using the fundamental
solution and matrix exponential. See MatrixExponential.pdf for
more on this and a description of the methods. Experiment with the
code on a variety of problems (change the dimension, the final time,
how different the hopping rates are) to get a feel for which methods
give accurate results for which problems. Look for problems that are
not extreme that make the eigenvalue method look bad, and problems
that make the matrix exponential method look bad. Note that you
don’t change the problem (or the solution algorithms) if you double
the hopping rates and cut the final time in half.

3

(c) Modify the function mee(L,t) to return a tuple (Python term) con-
sisting of the computed matrix exponential and the condition number
of the eigenvector matrix R. Modify the function meT(L,t,n) to re-

turn its computed exponential and the largest norm
∥∥∥ tk

k!L
k
∥∥∥. Modify

the output part of the main program (lines above 80) to add this in-
formation to the printout table. Comment on why/how well/not well
this information explains the accuracy/inaccuracy of each method.

(d) (Not for credit, only if it seems interesting to you). Write a module

that uses eigenvalyes/eigenvectors of the “symmetrized” matrix L̃ to
compute the exponential. This should be stable (unlike the unstable
mee) because the symmetric eigenvalue/eigenvector problem is well
conditioned. You might get the idea that using the symmetrized
matrix is a cure-all. It isn’t because most matrices cannot be sym-
metrized.

2. (This exercise explores linear least squares fitting in a setting where it
can be ill conditioned. It takes you through the process of creating and
working with fake data to see how well the algorithm works when you
know the answer.)

The problem (only slightly idealized from actual chemical estimation prob-
lems) involves concentrations Ci(t) that decay exponentially in time be-
cause of some chemical reaction. There are m chemical species whose
concentrations are decaying. Species i has decay rate ri, which means
that d

dtCi(t) = −riCi(t). In theory, the total concentration at time t
should be

f(t) =

m∑
i=1

Ci(t) .

The task is to estimate the initial concentrations of the species using only
observations of the total, f(t). and the fact that different species have
different decay rates: ri 6= rj if i 6= j. The initial concentrations are
Ai = Ci(0).

The approach will be linear least squares fitting. The quantities involved
are

• Positive decay rates: r1, · · · , rm, assumed known (for this exercise)

• Initial concentrations: A1, · · · , Am, to be estimated from data

• Observation times: 0 < t1 < t2 < · · · < tn

• Theoretical value at time t:

f(t) =

m∑
i=1

Aie
−rit .

• Observed values Fj , j = 1, · · · , n

4

• Residual (fitting error, statisticians’ terminology) εj = Fj − f(tj).

• Sum of squares of residuals

R2 =

n∑
j=1

ε2j .

• m = the number of exponentials in the fitting function f

• n = the number of observations

Least squares fitting means finding the Ai to minimize R2. Experiment
with this in the following steps. Write up your procedures and results
in a single paragraph or collection of paragraphs. Include printouts of
the Python modules you wrote and some important results. You will
receive more credit if you summarize your results in a few well formatted
tables rather than printing out a lot of numbers that are hard to interpret.
Interpreting results and understanding the main lessons of the exercise is
an important part of the exercise.

(a) Write a module that contains a function or functions to create fake
data. The function or functions should return numbers ri, tj , and Fj .
To do that, they will need to generate fake numbers Ai. The fake
observations Fj should be equal to f(tj)+ξj , where ξj (fake observa-
tion errors) independent and are generated using a Gaussian random
number generator with a specified standard deviation and mean zero.
This code should be given arguments that describe the difficulty of
the problem (more on this below). You will do experiments with easy
problems to check that the code works and then hard problems to
see what can and cannot be learned from observations.

(b) Write code to solve the linear least squares problem. Create a matrix,
M and “right hand side” b, in terms of the data ri, tj , and Fj , so

that the estimates Âi are components of a vector x that solves

min
x
‖Mx− b‖2 .

Do computational experiments to show that the estimates Âi are
close to the true values Ai for easy problems (small m, well separated
ri, lots of observations in a range that is not too small, not too large,
and well spaced, small observation noise. Your fake data generator
should be able to make data like this, with suitable input parameters.
Use one of the solution methods from part (c).

(c) Experiment with three solution algorithms for the linear least squares
problem.

i. Form the normal equations using M tM and solve using the
Cholesky factorization.

ii. Use the QR decomposition of M .

5

iii. Use the SV D of M .

The SVD is so that you can print the condition number

κ = σmax/σmin .

All three methods should give (to within roundoff) the same esti-

mates Âi for easy problems. Check this.

(d) Experiment with harder problems. Part of this problem is to see what
makes the problem hard. You can measure the difficulty using the
condition number computed from the singular values. Try making
the ri closer together, increasing m, clumping the tj . Comment on
the agreement between the different solution methods from part (c)
on hard problems. Can you tell which method does better or worse
on hard problems?

3. (This matrix compression exercise is based on a part of the fast mul-
tipole algorithm of Greengard (Courant Institute professor) and Rokhlin
(some other place). More correctly, it’s part of a black box version of the
algorithm. “Black box” means that you don’t use detailed properties of
the matrix elements but think of them as being in a “black box” that
you see into. Low rank approximations to high dimensional operators and
datasets is a central part of modern data science. The exercise illustrates
another aspect of scientific computing – it usually involves data.)

This exercise involves the illumination of nt target points by ns source
points. Suppose x and y represent points in three dimensional space.
Math people express this by writing x ∈ R3, y ∈ R3. If there is a light
source at x with intensity w, then the brightness of y is given by the
inverse square law:

b =
w

|x− y|2
.

If wi is the intensity at source point xi, then the brightness at target point
yj is given by

bj =

ns∑
i=1

wi

|xi − yj |2
. (1) is

(a) Express the inverse square law sum (
isis
1) in matrix/vector notation as

b = Aw , (2) m

where b ∈ Rnt has components bj and w ∈ Rns has components
wi. How many flops (one flop is one multiply and add) are needed
to evaluate the matrix/vector product (

mm
2) once the entries of A are

known? The formula involves nt and ns.

(b) Suppose a rank k approximation to A has been computed in the form

Ak = UkΣkV
t
k . (3) mc

6

Here, Uk and Vk have k columns and Σ is a k × k diagonal matrix.
How many flops are required to evaluate Akw? Do not “form” Ak

(compute its entries). Instead, compute its “action” using the “low
rank” algorithm

w −→
(
ΣkV

t
k

)
w −→ Uk

(
ΣkV

t
kw
)
.

Do not count the work needed to find Uk and ΣkV
t
k .

(c) Write a module that reads the source and target points from files.
You may use code from ReadParticleData.py. Your code should
then generate the matrix A and find best rank k approximation
(smallest k) with ‖A−Ak‖2 ≤ ε (with ε being a parameter in your
code, not hard-wired). The code that generates A (once the points
have been read from the datafile) should be simple scalar loops, as

for j in range(n_s):

for i in range(n_t):

...

A[j,i] = ...

Put in print statements after each major phase of the code: after
reading the data, after generating A, after the SVD, after gener-
ating ΣkV

t
k (one matrix) and Uk. Comment on the relative times.

The timing part should, literally, be a “waiting game” rather than a
precise exercise using Python timing routines. Just judge, on your
computer, how long the phases take. Do they correspond to the flop
count analyses?

(d) Suppose the source points themselves receive light from a central
source located at r ∈ R3, so wj = 1

|xj−r|2
. Compute bk (using the

low rank approximation Ak and b (using the full A). Compare the
“predicted” accuracy ε ‖w‖2 to the actual accuracy ‖bk − b‖2.

(e) Write functions or modules to compute the total illumination

I =

nt∑
i−1

bi .

using both A and Ak, as a function of r. This routine should use,
but not compute, A and/or Ak. How many different r locations does
it take before the low rank approximation is faster than the full rank
“exact” (in exact arithmetic) calculation? Take into account the set-
up time of computing Ak from A. Use your computer to test this,
not a theoretical analysis.

7

