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Second assignment

You should read Chapter 3 of Principles of Scientific Computing before doing
some of these problems. Some of the material needed for the exercises was not
covered in lecture.

1. Find a difference approximation of the form

f ′(x) =
1

h
[a0f(x) + a1f(x+ h) + a2f(x+ 2h) + a3f(x+ 3h)] +O(h4) .

One way to do this is using Richardson extrapolation with three first order
estimates A(h), A(2h), and A(3h), with A(h) = 1

h [f(x+ h)− f(x)].

2. (Try to look up the math background for the “big Oh” notation here, but
if you haven’t worked with it before, your answer may fall short of what
a mathematician would consider a proof. Just do your best.) Suppose
R is a region in the plane with a “nice” boundary (“nice” meaning “not
too jagged” but not not being defined completely). You can estimate the
area of R by counting the number of lattice points inside R. Let h be a
small parameter and define the h lattice points as (xj , yk) = (hj, hk). The
lattice point area estimate is

A(h) =
1

h2
# {(j, k) | (xj , yk) ∈ R} .

If S = {· · · } is a set, then # {· · · } denotes the number of elements in S.
Show that A(h) is first order accurate, |A(h)−A| = O(h), in the sense
that there is a C with

|A(h)−A| ≤ Ch .

if h is small enough. Your argument may use the “obvious” geometric
fact. Let Γ is the boundary of R, and let dist((x, y),Γ) be the distance
from (x, y) to Γ. If dist(x, y),Γ) > h, then the little square with side h and
center (x, y) is either entirely inside R or entirely outside R. The collection
of boxes around the lattice points (xj , yk) that are entirely inside R have
total area ≤ A. The collection of boxes that touch R have area ≥ A. If R
is “nice” then

B(h) = # {(j, k) | dist((xj , yk),Γ) < h} < Ch .

Actually, B(h) is something like 1
h length(Γ). Next, show that A(h) does

not have an asymptotic error expansion. For that, it suffices to take R to
be the square

R = unit square = {0 ≤ x ≤ 1 , 0 ≤ y ≤ 1} .
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[(for information only, not part of the exercise) The circle problem is to
understand A(h)−A when R is the inside of the unit circle. In that case,
A(h)− A = O(hp) for p > 1. Numerical experiments suggest it’s true for
any p < 3

2 . The mathematician Vander Corput proved it’s true for p < 4
3 ,

which is bigger than 1. Don’t expect to prove the full p < 3
2 , this implies

the Riemann hypotheses (a million dollar math problem, literally).]

3. Exercise 2 from Chapter 3 in the “book”. Read about multi-dimensional
difference approximations there before trying this.)

4. (This exercise covers numerics of integration, some aspects of software
practice in scientific computing, and more sophisticated adaptive compu-
tational algorithms. The sequence of steps illustrates the software develop-
ment process. You should read the Python notes on classes before starting.)

(a) Write a procedure that applies a fixed rectangle rule integration al-
gorithm with n equal sized sub-intervals to estimate

A =

∫ b

a

f(x) dx .

This function that does this should be in a separate module that you
can import into a main program module. The function should be
something like RR1f(a, b, n, m), where m is an object that has an
attribute m.f which is a function of one variable. If x is a floating
point number, then m.f(x) should be a function that return f(x).
The name m is for “model”. The name of the integration function is
understood as RR for “rectangle rule”, 1 for “first order accurate”,
and f for “fixed rule”. A sixth order adaptive Gauss quadrature
might be called GQ6a. Use different naming conventions if you want.
Check using a large n and a simple f (e.g., sine or exponential where
you can compute the answer in closed form).

(b) Write a main program that calls your integrator and verifies it con-
verges with first order accuracy as described in the notes. The code
can use n as a variable instead of h, so the error expansion for a
first order method is A(n) ∼ A + 1

nA1 + 1
n2A2 + · · · . Choose a test

problem and a range of n where the first order convergence is clear.

(c) Modify your integrator from part (a) to do the second order mid-
point rule. Use the code from part (b) to verify that the result has
asymptotic error behavior appropriate for a second order method.

(d) Apply the code of part (c) to the integrals

2 =

∫ 1

0

x−
1
2 dx , and

2

3
=

∫ 1

0

x
1
2 dx , and

2

5
=

∫ 1

0

x
3
2 dx .

What orders of accuracy do you observe? Explain in a mathematical
way using the error analysis for the midpoint rule which ones have
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convergence rate less than 2. If possible (this is not easy), explain
the orders that are less than 2. Hint. When you look at error ratios,
keep in mind that 2

1
2 = 1.4142 · · · , and 2

3
2 = 2.8284 · · · .

(e) Write an adaptive code RR1a(a, b, n0, m, tol) that starts with
n = n0 and continues to double n until asymptotic error analysis
suggests that the accuracy criterion |A(n) − A| ≤ tol is satisfied.
The routine should return a “tuple” consisting of the best approxi-
mation, the number of points needed to get it, and character string
that tells you whether the requested error was achieved or not. The
routine should have a bound (possibly named N max so that it will
declare failure if it gets to n > Nmax without satisfying the error cri-
terion. It should call the fixed n rectangle rule code to do the actual
approximate integrations. Find a hard problem where it works, such
as ∫ 1

0

λe−λx dx .

Find a problem where it does not work, such as f(x) being discontin-
uous and tol very small. The output should demonstrate that the
calling routine “understood” that the adaptive integration routine
did not work.

(f) Apply the code to the problem

f(t) =

∫ 1

0

cos(tx2) dx .

Do an experiment to see how many points are needed to compute
f(t) accurately for large t. If your code is good and well automated,
trial-and-error experiments like this should be easy. See whether you
can get into the “asymptotic regime” of t so large that the large t
asymptotic expansion applies:1

f(t) ∼
√
π

8t
+

1

2t
sin(t)− 1

4t2
cos(t)− · · · .

You will appreciate adaptive integration when you look at the num-
bers n needed for large t.

(g) Repeat part (f) but with a higher order basic integration method.
It should be easy and quick to swap out the rectangle rule fixed n
function and swap in one using Simpson’s rule, or the 3 point sixth
order Gauss quadrature rule. This is where you learn whether you
wrote good code for the earlier parts. Comment on the computation

1This approximation may be found by the “traditional” methods of asymptotic approxi-
mation of integrals. The book Advanced Mathematical Methods for Scientists and Engineers
by Carl Bender and Steve Orszag explains the methods. The first terms is from “near zero”
and is the value, properly defined, of the Fresnel integral

∫∞
−∞ cos(tx2)dx. The rest of the

terms come from “near 1” (the other endpoint) and may be found using integration by parts.
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time (n) needed for large t for the low and high order integration
methods. For a given Nmax, you should be able to do much larger t
using the high order method without failing, and with a small tol.
Note that the answer is going to zero, so you might look for relative
rather than absolute accuracy in part (e).

(h) There was supposed to be something using the slice attribute of
the Log Likelihood class, but I think this is enough.
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