Scientific Computing, Spring 1999
Assignment 7.

Given April 20, due end of finals week.

Objective: To code the FFT and see an application

This assignment makes use of a Fourier sine series, which is closely related to exponential
Fourier series we have worked with. Because e = cos(t) + isin(t), the exponential Fourier

coefficients,
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can be written as the sum of a cosine coefficient and a sine coefficient:
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In a similar way, we can define a discrete cosine transform and a discrete sin transform from
the discrete (exponential) Fourier transform.

The sine and cosine transform can be useful in certain circumstances, particularly when
the function, f, has special properties. In particular, the Fourier sine series is useful if f is
real and skew symmetric about ¢ = 7. This means that f(7+t) = — f(7 —t) for any ¢. Such
functions may seem odd and unlikely to arise in practice. They do arise in the following
way. Suppose that f(t) is initially defined for ¢ only in the range from 0 to 7, and that f is
continuous on that range, and that f(0) = 0 and f(7) = 0. In solving differential equations,
these would be called “Dirichlet boundary conditions”. A skew symmetric periodic function
that is continuous satisfies these conditions automatically. Conversely, for any continuous
function defined on the interval [0, 7] with Dirichlet boundary values, we can define a periodic
skew symmetric function, defined for all ¢, with the same values in the original [0, 7] interval.
First extend f to the complementary interval [7, 27| by skew symmetry: f(7+t) = —f(7—t)
for 0 < ¢t < 7. Then define f for ¢ outside the fundamental period [0, 27| by f(t+27mn) = f(t)
for t € [0,27] and n any integer. Of course, we never actually do this extension in the
computer. Instead, we think of doing it to help us derive properties of the Fourier sine series
using what we already know about the exponential Fourier series.

We can make a discrete version of this by thinking at first of the numbers f; as being
samples of a function: fy = f(¢x). If we have N points t, = kAt, At = 27/N, then the
midpoint, 7 will be one of the ¢, only if N is even. Therefore, suppose N = 2(M + 1) and
that we have M points uniformly spaced inside the interval [0, 7]:
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We can (mentally) extend the samples fi, defined for £ = 1,..., M to be defined for k£ =
0,..., N —1 by skew symmetry. First define fo = 0 (consistent with the Dirichlet boundary
condition). Then define fyip1 = —fx for k=0,..., M.

The exponential Fourier coefficients of the extended f give the Fourier sine coefficients
of the original f. In the continuous case,

fa = —1iby, , where b, = E /07r sin(at) f(t)dt . (2)
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and N
f(t) =2 bysin(at) . (3)
a=1
The factor of 2 in (??) comes from the fact that the contributions from « and —« are equal,
and we have kept only positive o terms. All the cosine coefficients, a, are zero in this case,
because the integrals

/0 ” cos(at) f(t)dt

are zZero.

1. Derive the discrete version of the Fourier sine series. This starts with M samples (real
numbers) , fi, ..., far, and produces M coefficients by, ..., by;. You can find these
formulae by using the DFT applied to the skew symmetric extended f.

2. Suppose that M = 2L — 1. Derive a fast algorithm for computing the discrete sine
coefficients that uses only real arithmetic. This will be called the FST (fast sine
transform)

3. Assuming that the f; are samples of a smooth, skew symmetric function, find an FST
based algorithm that gives a spectrally accurate estimate of f”(¢;) for k =1,..., M.
Call this operation A. That is, there is an M x M real matrix so that if Af = g, then
gk is the estimate of f”(t;) from the samples f;, j = 1, ..., M. Write a program to
calculate Af using teh FST. Check numerically that the matrix A is symmetric. Check
that it produces spectrally accurate results. For the latter, you will have to be careful
in choosing f.

4. Write a program to solve the partial differential equation
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with boundary conditions
u(z=0,t)=0, wulxz=mt)=0, (5)
and intitial conditions
u(z,t = 0) = zsin(x) (6)



Find an approximate solution by replacing u by a discrete approximation uy(t) ~
u(zk,t), where z, = kAzx, Ax = n/(M + 1), and k = 1, ..., M. Approximate the
equation (??) by

ig(t) = 5 (Au(t)), + o7 ")

This is a system of M ordinary differential equations. Compute the operation of A
using the algorithm from part 3. Solve these ordinary differential equations using the
fourth order Runge Kutta method. You must take the time step, At, to be very small
for large N. At a minimum, you must take At < iAmQ, or the numerical solution will
“blow up”!. Do a convergence study to verify that your method has spectral accuracy.
Compute solutions for various values of z. For small z the solutions tranquilly go to
zero as t — oo. For larger z, the solution develops a spike near x = m which leads to
infinite? u at £ = 7 for some finite ¢. Observe how the computational method breaks
down as the spike forms.

! This blow up has nothing to do with physical blowup of corectly computed solutions. It is a numerical
artifact assiciated with errors in the discrete approximation.
2This blow up is real, and very hard to compute, as you will see.



