Scientific Computing, Spring 1999 (http://www.math.nyu.edu/faculty /goodman/teaching/sci_comp_99/)
Assignment 1.

Given January 12, due February 2.

Objective: To explore computer arithmetic.

1. The fibonacci numbers, fi, are defined by fo =1, fi =1, and

Jrv1 = [ + fea (1)

[l

for any integer £ > 1. A small perturbation of them, the “pib numbers” (“p” instead
of “f” to indicate either the pentium bug or perturbation), py, are defined by py = 1,
p1 =1, and

Dk+1 = C - Pk + Pr—1 (2)

for any integer k£ > 1, where ¢ = 1 ++/3/100.

a. Make a plot of log(f,) and log(p,) as a function of n. On the plot, mark 1/¢,, . .»
for single and double precision IEEE floating point arithmetic. This can be useful
in answering the questions below.

b. For various n values, compute the f; for k¥ = 2,3,...,n using (1). Then rewrite
(1) to express fi 1 in terms or fi and fxy;. Use the computed f, and f, 1 to
recompute f; for k =n—2,n—3,...,0. Make a plot of the difference between the
original fo = 1 and the recomputed f; as a function of n. What n values result
in no accuracy for the recomputed f,? How do the results in single and double
precision differ?

c. Repeat b. for the pib numbers. Comment on the striking difference in the way
precision is lost in these two cases. Which is more typical? Faxtra credit: predict
the order of magnitude of the error in recomputing py using what you may know
about recurrence relations and what you should know about computer arithmetic.

2. The binomial coefficients, a,, are defined by

To compute the a, 4, for a given n, start with a, o = 1 and then use the recurrence
: _ n—k
relation a, ;1 = T On k-

(a) For a fixed of n, compute the a,, this way, noting the largest a, j and the accuracy
with which a,, = 1 is computed. Do this in single and double precision. Why is
it that roundoff is not a problem here as it was in problem (1)?



b. Use the algorithm of part (a) to compute

1 & n
B(b) = oo Y kane =5 . (4)
k=0

In this equation, we think of £ as a random variable, the number of heads in n
tosses of a fair coin, with E(k) being the expected value of k. This depends on n.
Write a program without any safeguards against overflow or zero divide (this time
only/)!. Show (both in single and double precision) that the computed answer has
high accuracy as long as the intermediate results are within the range of floating
point numbers. As with (a), explain how the computer gets an accurate, small,
answer when the intermediate numbers have such a wide range of values. Why is
cancellation not a problem? Note the advantage of a wider range of values: we
can compute E(k) for much larger n in double precision. Print E(k) as computed
by (4) and M, = maxy a,y,. For large n, one should be inf and the other NaN.
Why?

c. For fairly large n, plot a,  as a function of k£ for a range of k chosen to illuminate
the interesting “bell shaped” behavior of the a, ; near their maximum.
d. (Eztra credit, and lots of it!) Find a way to compute

n

S(k)y=>" (—1)* sin(27 sin(k/n))an x

k=0

with good relative accuracy for large n. This is very hard, so don’t spend too
much time on it.

1One of the purposes of the IEEE floating point standard was to allow a program with overflow or zero
divide to run and print results



