Basic Numerical Analysis*

Jonathan Goodman

January 27, 1999

1 Introduction

The most basic technique in numerical analysis is manipulation of Taylor series expansions.
This is how we find numerical methods for differentiation and integration, for solving differ-
ential equations, for optimization, and for many other purposes. The same kind of analysis
leads to quantitative understanding of the error in many numerical approximations. These
“asymptotic error expansions” are used for validating complex numerical software and for
developing efficient adaptive computational algorithms.

We will be concerned with efficiency. Here, efficiency means finding the derivative accu-
rately using a large step size, finding an integral accurately using a small number function
evaluations, etc. For casual computation such concern is probably a waste of time; more
time is spent optimizing the code than could possibly be saved in a computation that takes
less than a second on the computer. However, we will see that these simple operations are
at the heart of algorithms that solve partial differential equations, algorithms whose running
time and accuracy are of serious concern.

We will often use the phrase “for sufficiently small h” without clarifying how small is small
enough. This issue is too problem dependent to settle in a simple general way. When £ is
small enough, we say that “h is in the asymptotic range”, the range in which an asymptotic
expansion gives useful information. It is often clear from the problem roughly how large the
asymptotic range is likely to be, and that range is usually large enough to cover practical h
values. If a code is unable to produce results consistent with an asymptotic error analysis,
it is generally not because the asymptotic range is inaccessible. Look instead for a bug in
the code, in the method, or in the error analysis.

The three specific problems discussed in this chapter are differentiation, integration, and
interpolation. Numerical differentiation is the problem of finding (as accurately as necessary)
a derivative of a function, given several values of the function itself. Numerical integration is
the problem of computing the integral. Interpolation is the problem of evaluating a function
at some value of its arguments given as data function values at other values of the arguments.
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Each of these topics is treated from the point view of asymptotic error expansions. The
chapter also discusses asymptotic error expansions, and their uses, in general.

2 Taylor series and asymptotic expansions

The! Taylor series may be thought of in two ways, as a “convergent” formula for a function
value, or as an “asymptotic expansion”, a sequence of approximations of increasing “order
of accuracy”. All of these terms are explained below.

Suppose we have a function, f(z), and a “step size”, h. The Taylor series for f about z
is

Fla+h) = @) + b @) + o ) et ) ()
The series (1) “converges” if
f(as)-l—-“—i-ff(")(x)—)f(x—i-h) as n — oo. (2)

n!

Generally speaking, if you can write a formula for f(z) then the expansion will converge for
sufficiently small h. The formula (2) suggests that we improve the accuracy of the Taylor
series approximation by taking more terms.

The accuracy also increases if we make h smaller; it will become clear later why we are
allowed to do this. One way to prove that Taylor series converge is to use the “remainder
theorem”, which is the formula:

h(n+1)
(n+1)!
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This & depends on x, h, and n in an unknown way, except that £ is between z and x + h. If
h is negative, then x + h is to the left of x, but still £ is between. If we fix a maximum step
size, hg, and set

Mygy = max | (@ + )] /(n+ 1)1, ()
|h|<ho

then (3) gives us a bound on how large the Taylor series error can be. This bound is

(n—1)
‘f(m-l—h)—(f(x)-l—----l— h !f("_l)(x)>‘SMn|hn| : (5)

—1
(n—1)
The inequality (5) does not guarantee that the Taylor series converges, because M, h" need
not go to zero as n — oo. However, it does say something about what happens, for any
particular n, as h — 0.

To summarize, we can think of (1) as a way to compute a particular value of f, in which
case we keep h fixed and increase n. We could instead view (1) as a family of approximations
to the function f for values near z. The error bound (5) gives a sense in which using more

! This section was added last. Therefore many of the points made here are repeated later.



terms gives a better approximation. If E(h) is the error on the left side of (5), then (5) is
often written

E(h) = O(h") . 6)

This is called the “big O” notation. A mathematician would read (6) as “E(h) is of the
order of h™. This is what we think of as an order of magnitude, not a power of 10 but a
power of h. The power of h is the “order of accuracy”, first order, second order, and so on.

Very often we use Taylor series as asymptotic series to understand the asymptotic accu-
racy, or the order of accuracy, of simple approximations. We also use them to find asymptotic
approximations for the error itself. For example, if we approximate f(x+ h) using two terms
of the Taylor expansion, the error is

E(h) = f(z +h) — f(z) — hf'(z) .

The approximation is second order accurate because F(h) < Mh?, for some constant, M, if
h is small enough. However, we can say more about the error. In fact, if we just keep more
terms of the Taylor series, we find that

E(h) ~ azh® + ash* + -+, (7)

where the coefficients a3, a4, and so on are determined by f. For example, the statement
E(h) < Mh? does not necessarily imply that the error decreases when we substitute h/2 for
h, although it does imply that the error eventually goes down so as not to exceed the error
bound. On the other hand, (7) implies that, for sufficiently small h, the error goes down
almost exactly by a factor of 8. This predictability of the error in approximations is the
basis for much sophisticated numerical software.

As the formula (4) indicates, all this asymptotic expansion stuff might not apply if the
function does not have enough derivatives. This can happen even with functions that seem
nice enough when you plot them. It is hard to tell from a plot where, for example, the
third derivative is discontinuous. A discontinuity in the third derivative can invalidate the
asymptotic expansions that predict order of accuracy and change the behavior of the error
sometimes disastrous ways.

3 Numerical Differentiation

We start with the simplest case. Suppose we have a smooth function, f(z), of a single
variable, z. If we can evaluate f but not f' = %, we could approximate f’' by a difference



quotient. Several common approximations are

f@) ~ LI @
fla) ~ D= TE2R o)

flz) =~ flz+ h’)Q_hf(l' —h) (c) ( (8)
f’(.’L‘) ~ —f(.’li + 2h) + 4éfif$ + h) - 3f(!13) (d)

fllz) =~ —f(z +2h) +8f(z + hl)Q;L 8f(x —h)+ f(xz+2h) (e) J

The first three have simple geometric interpretations as the slope of lines connecting nearby
points on the graph of f(z). A carefully drawn figure shows that (8c) is more accurate than
(8a). We give an analytical explanation of this below. The last two are more technical.

The advantage of the last one over the others is its greater accuracy. If A is small enough,
the error in (8e) is likely to be much less than the error in the others. This often (but not
always) has the consequence that (8e) achieves a given level of accuracy (say 1%) for a larger
h value, a property that leads to greater efficiency when solving differential equations.

To perform a basic error analysis, we use the Taylor series expansion (1). Substituting
this into (8a) gives

flx+h)—flx) _ ) ")
Y =f'(z)+h 5 T h e
Now we can express the error in formula (8a) by:
i) = BT 4
where
h n h2 n
Ea(h)zgf (x)‘*‘gf (@) +--- (9)

If h is small, then h? is smaller still; h? is smaller than A by a factor of h. Thus, %2 " (x)
will be much smaller than 2 f”(z) unless f"(z) is much larger than f”(z). When h is small
enough, we may approximate the error by

E,(h) ~ if”(x) .
This tells the story about approximation (8a). The error depends roughly linearly on A (for
small enough h). Cutting A in half reduces the error roughly in half. The same is true of the
related approximation (8b). The approximations (8a) and (8b) are called “first order one
sided difference approximations” to the derivative.



Taylor series analysis applied to the centered difference approximation (8c) leads to

flz+h)— flz—h)

! — E
f(z) A= L pw
where
h? ht (5)
B = B+ Do)+ (10
h2
N = f"(z) for h small enough.

In this case, the error depends quadratically on A instead of linearly. Moreover the error
from (8c) is much smaller than the error from (8a) or (8b). That is?,

h2 n h " .

gf () < §f () ie. E.h) < E,(h) for small enough h.

When the error is on the order of h for small A we say that the approximation is first
order accurate. When it is of the order of h? we call it second order accurate, and similarly
for third, fourth, and higher powers of h. A Taylor series analysis shows that (8d) is second
order accurate while (8e) is fourth order. If A is small and the derivatives of f up to fifth
order are not extremely large then (8c) and (8d) are more accurate than (8a) or (8b), and (8e)
is more accurate than any of the others. The approximation (8c) is called the “second order
three point centered difference approximation” to the derivative; (8d) is the “three point one
sided second order” difference approximation; (8e) is the “five point centered fourth order”
approximation.

As mentioned before, a difference approximation may not achieve its expected order of
accuracy if the requisite derivatives are infinite or do not exist. As an example of this, let
f(z) be the function

0 if <0
f(x)_{ﬁ if >0 .

If we want f/(0) , the formulas (1c) and (1e) are only first order accurate despite their higher
accuracy for smoother functions. This f has a mild singularity, a discontinuity in its second
derivative. Such a singularity is hard to spot on a graph. Nevertheless, it has a drastic effect
on the numerical analysis of the function.

We can use finite differences to approximate higher derivatives such as

f($+h)—2f($)+f($—h)+h2 @)

(@) = B2 12

and to estimate partial derivatives of functions depending on several variables, such as
2h 3 0x3

2The notation A <« B is read “A is much smaller than B”.
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We can approximate sums of partial derivatives by adding the separate difference approxi-
mations. For example

_82f+82fNf(:v—l—h,y)—i—f(x—h,y)+f(x,y+h)+f(x,y—h)—4f(x,y)
2 h?2 '

Af

This is called “the standard 5 point discrete Laplacian”. It is not necessary to approximate
Af by approximating the second partials separately in this way. Another second order
accurate approximation is

f(x—i—h,y-l—h)—i—f(ac—i—h,y—h)+f(a:—h,y+h)+f($—h,y—h)—4f(ac,y)

This “rotated 5 point” approximation is rarely preferable to the standard, one.

A multidimensional complication is that we might use different step sizes in different
coordinate directions. An important example of this arises when we compute a function,
f(z,t) that satisfies a partial differential equation such as

of _o’f
ot 0x2
To evaluate the combination
of 0*f
9t om2 (11)

we need a “time step”, At, and a “space step”, Az. For example, we might use

g ~ f(.’L',t—{—At)—f(ZL',t)

Ry 12
ot At (12)
and
Pf _ fle+Axt) = 2f(x,t) + f(z — Az, 1) (13)
dx2 2Ax
The approximation (12) has error roughly At% /2 which is first order in A¢. The approxi-
20'f

mation (13) has error roughly Az?Z-% /6, which is second order in Az. If we now take Az = h
and At = h? then the principle term in the error in the approximation to (11) is is

(101 107
h (2 ot? +66:134

This example illustrates the point that the overall order of accuracy depends not only on
the order of accuracy of the individual approximations, but also on the choice of step sizes
in various directions.

4 Error Expansions and Richardson Extrapolation

The error expansions (9) and (10) above are instances of a common situation that we now
describe more systematically and abstractly. Suppose we are trying to compute a number,



A, which is the “Answer” to some computational problem. We have an approximation to A
that depends on a step size, h:
A= A(h) .

The approximation becomes increasingly accurate as h becomes small:
A(h) > A as h—0 .

The error is E(h) = A(h) — A.
An “asymptotic error expansion” in powers of h can be expressed either by

Ah) ~ A+ PP Ay + WP Ay + -+ (14)

or, equivalently, by
E(h) ~ hplAl + hp2A2 + .-

The expression (14) does not imply that the series on the right converges to A(h), but rather
it is a substitute for the statements that make it an asymptotic series:

A(h) — (A PL A )
(h) = (A+h 1)—>0 as h — 0, (a)
hPt
_ p1 D2
A(h) — (A+ hP* Ay + hP2 Ay) 40 ashoo, () [ (15)
hp2
and so on.

/

The statement (15a) says not only that A+ hP' is a good approximation to A(h), but that the
error in the approximation is smaller than h?* for small enough h. The statement (15b) says
that A+hP'A;+hP? A, is a better approximation to A(h) in that the error is smaller than h?2,
which is much smaller than AP! for small h. It goes without saying that 0 < p; < ps < ---.
In many cases, the powers and coefficients are found by Taylor series manipulations. For the
approximations (8a) and (8b), p; = 1, p2 = 2, p3 = 3, and so on. For (8¢c), p; = 2, pp = 4,
ps = 6, and so on. Although (8d) has the same order as (8c), p; = 2 in both cases, but its
asymptotic error expansion, p, = 3, p3 = 4, etc. is different (work this out!). In all cases the
principal error term is dominant when A is small enough. How small is small enough depends
on the coefficients, Ay, As, etc. The leading power, p;, determines the order of accuracy, as
we have seen. This order need not be an integer. Methods with fractional order of accuracy
sometimes arise, particularly in simulation of stochastic differential equations. Two methods
may have the same order of accuracy but different asymptotic error expansions, as we have
seen.

It is possible that an approximation is p* order accurate in the “big O” sense, E(h) =
O(hP), without having an asymptotic error expansion of the form (14). An example of this
is coming.

It can be valuable to know the ezistence of an error expansion of the form (14) even if the
coefficients, A;, As, ..., cannot be determined. The two main applications are convergence
analysis and Richardson extrapolation. In convergence analysis, we verify empirically



| h | Error: E(h) | Ratio: E(h)/E(h/2) |
1 4.8756e-04 3.7339e+00
.05 1.3058e-04 6.4103e4-00
.025 2.0370e-05 7.3018e+00
.0125 2.7898e-06 7.6717e+00
6.2500e-03 | 3.6364e-07 7.8407e+00
3.1250e-03 | 4.6379e-08 7.9215e+00
1.5625e-03 | 5.8547e-09 7.9611e+00

7.8125e-04 | 7.3542e-10 -

Figure 1: Convergence Study for a third order accurate approximation

| h | Error: E(h) | Ratio: E(h)/E(h/2) |
1 1.9041e-02 2.4014e+00
.05 7.9289e-03 1.4958e+01
.025 5.3008e-04 -1.5112e4-00
.0125 -3.5075e-04 3.0145e+4-00
6.2500e-03 | -1.1635e-04 1.9880e+01
3.1250e-03 | -5.8529e-06 -8.9173e-01
1.5625e-03 | 6.5635e-06 2.8250e-+00

7.8125e-04 | 2.3233e-06 E—

Figure 2: Convergence Study for a method that has no asymptotic expansion

the supposed order of accuracy of numbers produced by a computer code that may be large,
unknown, and contain bugs. In Richardson extrapolation, we combine approximations for

several values of h to produce a new approximation that has greater order of accuracy than
A(h).

4.1 Richardson extrapolation

Richardson extrapolation is a method that increases the order of accuracy of an approxima-
tion provided that the approximation has an asymptotic error expansion of the form (14).
In its simplest form, we compute A(h) and A(2h) and then form a linear combination that
eliminates the largest error term, h?' A;. Since

A(2h) = A+ (2R A1+ (2R)” Ay + - -
A+2P1hP1A1 +2P2hP2A2 —+ - ,
we find that
271 A(h) — A(2h) 22 — 1] 2P — 1
= A P2 A P3 A cee
o — 1 +2p1_1h 2+2p1_1h 3+



In other words, the extrapolated approximation

7 A(h) — A(2h)
N o — 1

AW (h) (16)

has order of accuracy p, > p; and asymptotic error expansion

A(l)(h) = A+ hmAgl) + hp3Ag1) NP

22 — 1
where Agl) = ——— Ay, and so on.
1 — |
Richardson extrapolation can be repeated to remove more asymptotic error terms. For

example,
B 272 A (B) — AW (2h)
N 2 — 1

has order ps. Since A®) depends on A(h) and A(2h), A® depends on A(h), A(2h), and
A(4h). Tt is not necessary to use powers of 2, but this is natural in many applications.
Richardson extrapolation will not work if the underlying approximation, A(h), has accuracy
of order A? in the O(hP) sense without at least one term of an asymptotic expansion.

As an example, we derive higher order difference approximations from low order ones.
Start, for example, with the first order one sided approximation to f'(xz) given by (8a).
Taking p; = 1 in (16) leads to the second order approximation
, J@+h) = f(@) [ +2h) - f(2)

h 2h
—f(x+2h)+4f(z+h) —3f(x)
2h ’

A®) ()

1

f'(z)

which is the second order three point one sided difference approximation (8d). Starting with
the second order centered approximation (8c) (with p; = 2 and p, = 4) leads to the fourth
order approximation (8e).

Richardson extrapolation may also be applied to the output of a complex code. Run it
with step size h and 2h and apply (16) to the output. This is sometimes applied to stochastic
differential equations as an alternative to making up high order schemes from scratch, which
can be time consuming and intricate.

When Richardson extrapolation is applied to integration using the trapezoid rule, the
resulting integration method is called Romberg integration.

4.2 Convergence analysis

It is important to find ways to test whether a code and the algorithm it is based on are correct.
A very useful test, “convergence analysis”, is based on the asymptotic error expansion (14).
It tests not only whether the error is going to zero as h — 0, but whether it does so as
predicted by theory. Suppose, for example, we program the formula (8e) but with 3 instead
of 4. The resulting approximation will converge to f'(z) as h — 0 but with the wrong order
fo accuracy. A convergence analysis would uncover this immediately.



There are two cases, the case where the exact answer is known and the case where it is
not known. While we probably would not write a code for a problem to which we know the
answer, it is often possible to apply a code to a problem with a known answer for debugging.
In fact, a code should be written modularly so that it is easy to apply it to a range or
problems broad enough to include a nontrivial problem® with a known answer.

If A is known, we can run the code with step size h and 2h and, from the resulting
approximations, A(h) and A(2h), compute

E(h) A hPr 4+ AghP? 4 - - |
E(2h) = 2P1A RPN 4+ 272 AphP? + - -

112

For small h the first term is a good enough approximation so that the ratio should be
approximately the characteristic value

Figure 1 is a computational illustration of this phenomenon. Figure 2 shows what may
happen when we apply this convergence analysis to an approximation that is second order
accurate in the big O sense without having an asymptotic error expansion. The error gets
very small but the error ratio does not have simple behavior as in Figure 1.

Convergence analysis can be applied even when A is not known. In this case we need three
approximations, A(4h), A(2h), and A(h). Again assuming the existence of an asymptotic
error expansion (8), we get, for small h,

A(dh) — AR2R) .,
A(2R)— A(h) —

R'(h) =

5 Integration

Here the Answer we want is the integral

I= /abf(m)da; .

We discuss only “panel methods” here. Other elegant methods such as Gauss quadrature
are discussed in Dahlquist and Bjork and other places. In a panel method, the integration
interval, [a, b], is divided into n subintervals, or panels, Py = [z, Txy1], Where a = 29 < 1 <
--- < x, = b. If the panel Py is small, we can get an accurate approximation to

Tk+1

I, = /Pk f(z)dz :/z f(z)dx

k
using a few evaluations of f inside P;. Adding these approximations over k given an ap-
proximation to the integral I. Some of the more common panel integral approximations are
given in Figure 3. There xj11/2 = (2541 + 2%)/2 is the midpoint of the panel.

3A trivial problem is one that is too simple to test the code fully. For example, if you compute the
derivative of a linear function, any of the formulae (8a) — (8¢) would give the exact answer. There would be
no truncation error for the convergence analysis to measure. The fourth order approximation (8e) gives the
exact answer for any polynomial of degree less than five.

10



Rectangle Iy =~ hf(zg) 1% order
h
Trapezoid Iy = 5 (f(zg) + f(zh11)) 2™ order
Midpoint I ~ hf(xgy1/2) 274 order
) h
Simpson I, ~ E (f(xk) + 6.f(Tkt1/2) + f(xk+1)) A% order
. h h h
2 point GQ Iy ~ ) (f($k+1/2 - ﬁ) + f(Tpg1/2 + ﬁ)> 4% order
) h h h th
3 point GQ | Iy = — | 5f(@ky1/2 — —=) + 8f (Try1/2) + 5 (Tryr2 + —>=) | | 6™ order
18 2,/2 2,/3

Figure 3: Common panel integration rules

We begin our error analysis of panel methods assuming that all the panels are the same
size
h = Az = |Py| = xp41 — xp for all k.

Given this restriction, not every value of h is allowed. When we take h — 0, we will assume
that h only takes allowed values h = (b — a)/n for some integer n.

The overall integration error is the sum of the integration errors for the individual panels.
To focus on a particular panel, suppose that P is a generic interval of length h, that is
P = [z,,z. + h]. For the rectangle rule, we approximate

.CE*"‘h

Ip:/Pf(a:)dac:/E f(z)dx

*

with the approximate integral, Ip(h), defined by

Ip(h) = hf(z.) .
To estimate the difference between Ip and Ip(h), we expand f in a Taylor series about z,:

(& —2.)"

f@) m f(@) + (@ = 2)f () +

f”(x*) + P
Integrating this term by term leads to
Ip(z) = /P Flz)dz + /P(x — ) f(w)dz + - --
h? h3
= hf(m) + g S )+ T )
The error in integration over this panel then is
h? h3
E(P,h) =1Ip(h) —Ip ~ —Ef'(a:*)— gf”(a:*)—--- . (17)

From this we see that the error in integration over any particular panel is on the order of
h?. This leads to a global integration error on the order of h because the number of panels

11



is n = (b — a)/h. In other words, the local truncation error of order h? adds up to lead to a
global error of order h.

To see this more precisely and construct the asymptotic error expansion, we sum the
local for the panels over all panels to get the total error

n—1 n—1 h2 n—1 h3
Eio = Z()E(Pk, h) ~ — Zo 3]“(90/:) - Zogf"(ﬂﬁk) - (18)

The first term on the right is generally the largest for small h. We can understand it as

follows. Since .

RS o) = /abf(x)dx+0(h) ,

n=0

we have .
n— b
Y f@) = [ f@)ds+0(h) = £() - f(a) + Oh) -
n=0 a
With this approximation, we see that

Buu~ =3 (70) = f(@) +00) . (19)

This gives the first term in the asymptotic error expansion. To get the next term, apply (18)
to the error itself, i.e.

R ) = [ - 50 - @) + (k)
= J0)~ Fa) — 5 (5"(0) — ")) + O(R?)

In the same way, we find that

2 1" = g (70 - (@) + 0

Combing all these gives the first two terms in the total error expansion

2
Brot &~ (10) = F(@)) + 5 (70) = f@) + -+ . (20)
It is clear that this procedure can be used to continue the expansion as far as we want,
but you would have to be very determined to compute, for example, A4 the coefficient of h*.
An elegant and much more systematic discussion of this error expansion is carried out in the
book of Dahlquist and Bjork. The resulting error expansion is called the Euler McLaurin
formula. The coefficients 1/2, 1/12, and so on, are called Bernoulli numbers.
The error expansion (20) will not be valid if the integrand, f, has singularities inside
the domain of integration. Suppose, for example, that f(z) = 0 for z < 1//2 and f(z) =

x —1/4/2 for x > 0. In this case the error expansion for the rectangle rule approximation

12



n | Computed Integral | Error | Error/h | (E — Ajh)/h? | (E — Ajh — Ayh®)/RP
10 3.2271 -0.2546 | -1.6973 0.2900 -0.7250
20 3.3528 -0.1289 | -1.7191 0.2901 -0.3626
40 3.4168 -0.0649 | -1.7300 0.2901 -0.1813
80 3.4492 -0.0325 | -1.7354 0.2901 -0.0907
160 3.4654 -0.0163 | -1.7381 0.2901 -0.0453

Figure 4: Computational experiment illustrating the asymptotic error expansion for rectangle

rule integration

n | Computed Integral Error Error/h | (E — Ah)/h?
10 7.4398e-02 -3.1277e-02 | -3.1277e-01 | -4.2173e-01
20 9.1097e-02 -1.4578e-02 | -2.9156e-01 | -4.1926e-01
40 9.8844e-02 -6.8314e-03 | -2.7326e-01 | -1.0635e-01
80 1.0241e-01 -3.2605e-03 | -2.6084e-01 7.8070e-01
160 1.0393e-01 -1.7446e-03 | -2.7914e-01 | -1.3670e+00
320 1.0482e-01 -8.5085e-04 | -2.7227e-01 | -5.3609e-01
640 1.0526e-01 -4.1805e-04 | -2.6755e-01 | 1.9508e+00
1280 1.0546e-01 -2.1442¢-04 | -2.7446e-01 | -4.9470e+00
2560 1.0557e-01 -1.0631e-04 | -2.7214e-01 | -3.9497e+00
5120 1.0562e-01 -5.2795e-05 | -2.7031e-01 | 1.4700e+00

Figure 5: Computational experiment illustrating the breakdown of the asymptotic expansion.
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to [y f(z)dz has one valid term only. This is illustrated in Figure 5. The “Error/h” column
shows that the first coefficient, A;, exists. Moreover, A; is given by the formula (20). The
numbers is the last column do not tend to a limit. This shows that the coefficient Ay does
not exist. The error expansion does not exist beyond the first term.

The analysis of the higher order integration methods listed in Table 1 will be easier if we
use a more symmetric basic panel. From now on, the panel of length h will have x, in the
center, rather at the left end, that is

P=[z,—h/2,2,+ h/2]
If we now expand f(z) in a Taylor series about z, and integrate term by term, we get

fa),s , 1@

5 .« .
16 384 W

/Pf(ac)dac = /:*Jr%h f(z)dz ~ hf(z,) +

=Tx—75

For the midpoint rule, this leads to a global error expansion in even powers of h, £ ~
Ah? + Aoh* + - -« with A} = (f'(b) — f'(a))/16. Each of the remaining panel methods is
symmetric about the center of the panel. This implies that each of them has local truncation
error containing only odd powers of & and global error, E},¢, containing only even powers
of h.

For the remaining methods, we will not compute the coefficients in the error expansion,
but only the leading power of h, the order of accuracy. This can be determined by a simple
observation: the order of the local truncation error is one more than the degree of the lowest
monomial that is not integrated exactly by the panel method. For example, the rectangle
rule integrates f(z) = z° = 1 exactly but gets f(z) = ' = z wrong. The order of the
lowest monomial not integrated exactly is 1 so the local truncation error is of the order of
h?. The midpoint rule integrates z° and x! correctly but gets 22 wrong. The order of the
lowest monomial not integrated exactly is 2 so the local truncation error is of the order of
h3. If the generic panel has z, in the center, then

/P (z — z,)" dx

is always done exactly if n is odd. This is because both the exact integral and its panel
method approximation are zero by symmetry. The exact integral because the panel is sym-
metric about x, and the discrete approximation to it because the evaluation points and
weights are also symmetric about z,. This is not true of the rectangle rule.

To understand why this rule works, think of the Taylor expansion of a general function,
f(z) about the midpoint, z,. This is the same as writing f as the sum of a series of
monomials. Applying the panel integral approximation to f is the same as applying the
approximation to each monomial and summing the results. Moreover, the integral of a
monomial (z — x,)" over P is proportional to h"*! as is the panel method approximation
to it, regardless of whether the panel method is exact or not. The first monomial that is not
integrated exactly contributes something proportional to A"*! to the error.

Using this rule it is easy to determine the accuracy of the approximations in Table 1.
The trapezoid rule integrates constants and linear functions exactly, but it gets quadratics
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wrong. This makes the local truncation error third order and the global error second order.
The Simpson’s rule coefficients 1/6 and 2/3 are designed exactly to integrate constants and
quadratics exactly, which they do. Simpson’s rule integrates cubics exactly (by symmetry)
but quartics are gotten wrong. This makes Simpson’s rule have fourth order global accuracy.
The two point Gauss quadrature also does constants and quadratics correctly but quartics
wrong (check this!). The three point Gauss quadrature rule does constants, quadratics, and
quartics correctly but gets (z — z,)® wrong. That makes it sixth order accurate. The theory
of Gauss quadrature is discussed by Dahlquist and Bjork. I think it is the most beautiful
part of numerical analysis.
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