
Final Examination, Scientific Computing, May 4, 2006

1. We compute x in single and double precision, getting (printing only five
digits) x̂s = 3.4367 × 106 and x̂d = 3.4543 × 106 respectively. The calcu-
lation is complicated but the only error is roundoff. The computational
algorithm is stable in that it is roughly as accurate as is allowed by the
condition number. The computation would be exact in exact arithmetic.
How many digits of the computed x̂s(k) and x̂d(k) are likely to be cor-
rect? Assume the double precision result is more accurate than the single
precision result.

2. In each case below you are asked to judge whether a code is working
correctly based only on a few small tests. In each case, state whether
the code is behaving quantitatively as a correct code would and give your
reasoning.

(a) The code is supposed to evaluate
∫ 2

0
f(x)dx using a third order panel

method using n equal size panels. We tried it for f(x) = xe−x2/2 and
compared the computed result to the analytical result.

n 20 40 80
error 1.2 × 10−2 1.8 × 10−3 2.3 × 10−4

(b) The code applies Newton’s method to finding the maximum of a
function of n variables. We applied it to a relatively easy problem
with a single nondegenerate local maximum.

iteration 7 8 9 10
error 2.5 × 10−1 8.3 × 10−2 2.8 × 10−2 9.1 × 10−3

(c) The code, double Ahat(int n), applies simple Monte Carlo to es-
timate A = E[X ] by averaging n independent samples of X . To
test the code we did four runs listed below. Each run estimated the
statistical error in Ahat using the code fragment

int calls = 50;

double AhatSum = 0;

double AhatSS = 0;

double AhatVal;

for ( int call = 0; call < calls; call++ ) {

AhatVal = Ahat(n);

AhatSum += AhatVal;

AhatSS += AhatVal*AhatVal; }

AhatBar = AhatSum/calls;

AhatVar = ( AhatSS - calls*AhatBar*AhatBar ) / calls;

cout << "Standard deviation from n = << n << " samples, "

<< " estimated using " << calls << " calls = "

<< sqrt( AhatVar )<< endl;
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The results were

n 106 4 × 106 16 × 106 64 × 106

standard dev. 3.1 × 10−3 1.1 × 10−3 4.0 × 10−4 1.3 × 10−4

3. Suppose A is a symmetric positive definite matrix. Consider the system
of second order differential equations

ẍ = −Ax . (1)

The scalar case ÿ = −ω2y has solution

y(t) = cos(ωt)y(0) +
1

ω
sin(ωt)ẏ(0) = a cos(ωt) + b sin(ωt) .

(a) Write an expression for the general solution of (1) using eigenvalues
and eigenvectors, Auα = λαuα, that shows that solutions remain
bounded as t → ∞. Do not worry about how the numbers aα and
bα are found from initial data.

(b) If we discretize (1) using the Verlet scheme:

(xk+1 − 2xk + xk−1)/∆t2 = −Axk ,

what order of accuracy would we get? As usual, xk is the approxi-
mation to x(tk) = x(k∆t).

(c) The statement: “xk is bounded as k → ∞” is true: (i) for any positive
definite symmetric A and positive ∆t, or (ii) for any positive definite
symmetric A and ∆t sufficiently small (possibly depending on A), or
(iii) for no ∆t > 0? Decide which and explain.

4. Define I(h) =
∫ h

0
f(x)dx. We want to estimate I(h) using a linear combi-

nation of the data f(0) and I(2h). What is the highest order of accuracy
we can achieve and what is the estimator that achieves it?

5. Show that if R is an n × m matrix and B = R∗R. Show that ‖B‖l2 =

‖R‖
2

l2 . (Hint: Use the singular value decomposition of R.) Is it true that

‖B‖ = ‖R‖
2

in other norms? Explain why or why not, possibly by a
counterexample.

6. These questions are related to perturbation theory and the condition num-
ber of the Choleski decomposition. The perturbation part comes up in
Monte Carlo computation using multivariate normals. Always A is a sym-
metric and positive definite matrix and LL∗ = A is the Choleski decom-
position.

(a) Suppose A = I + ǫȦ, and L = I + ǫL̇ + O(ǫ2). Find the entries of L̇
in terms of the entries of Ȧ. The operation count should be O(n2)
or less.
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(b) Suppose A(ǫ) = A + ǫȦ and L(ǫ) = L + ǫL̇ + O(ǫ2). Find an O(n3)
work algorithm to find the entries of M = L−1L̇ from the entries of L
and Ȧ. Hint: differentiate, then multiply by L−1 from one side and
by L−∗ (the inverse of L∗, which also is the transpose of L−1) from
the other. Finally, use this to give an O(n3) way to find the entries
of L̇.

(c) Show that ‖M‖ ≤
∥∥∥Ȧ

∥∥∥
∥∥L−1

∥∥2
, and from that find a formula for

the (informal) condition number of finding L from A in terms of the
condition number of A. Hint, use the result of Problem 5.

7. Consider the code

int n = 10 // The power of 2 for shrinking.

double x = 1. + rng(); // rng() makes standard uniform ...

double y = 1. + rng(); // random variables

double s = 1 / ( (double) pow(2,n) );

y = s*y;

if ( y == ( x + y ) - x ) cout << "Exact!" << endl;

In IEEE floating point arithmetic with all intermediate results truncated
to 64 bits, is the result more likely to be “Exact!” when n = 0 or n =

10? The purpose of n = 10 is to make y much less than x.
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