Assignment 2.

Given February 3, due February 10.

Objective: To work with Taylor series in elementary numerical analysis.

1. Examine curve A and curve B. One of the functions has a jump in its third derivative while the other is completely smooth. Try to determine which curve has a discontinuous third derivative and locate the discontinuity on the graph. Do not spend much of time doing this in a quantitative way, but do make a guess. In the past, there have been more wrong than correct answers.

2. Extrapolation means estimating the value of a function from known values on one side only. For example, suppose \(g(x) \) is a smooth function of \(x \) and we know the values \(g(0) \), \(g(h) \), \(g(2h) \), and so on. We wish to estimate, say, \(g(-h) \) or \(g(-2h) \) from the known values. One instance would be the estimate:

\[
g(-2h) \approx a_0 g(0) + a_1 g(h) + a_2 g(2h) + a_3 g(3h) .
\] (1)

The coefficients happen not to depend on \(h \) in this problem. Show that we get first order accurate estimates of \(g(-h) \) or \(g(-2h) \) using only \(g(0) \), second order accuracy with \(g(0) \), and \(g(h) \), and so on to fourth order accuracy with (1). We say that \(g \) is constant if \(g(x) = b_0 \) for all \(x \), linear if \(g(x) = b_0 + b_1 x \), quadratic if \(g(x) = b_0 + b_1 x + b_2 x^2 \), etc. Show that these extrapolations are exact for constants, linears, quadratics, and cubics respectively.

3. The interval \((0, L)\) is divided into \(n \) subintervals, called cells, of equal length \(\Delta x = L/n \). Use the notation \(x_k = k \Delta x \) for the endpoints of the cells, and \(I_k = (x_k, x_{k+1}) \) for the cells themselves. It will be convenient to write \(x_{k+1/2} = (k + 1/2) \Delta x \) for the midpoint of \(I_k \). We do not have the values of \(f \), but we do have the cell averages

\[
F_k = \frac{1}{\Delta x} \int_{x_k}^{x_{k+1}} f(x) dx .
\]

Assume that \(f(x) \) is a smooth function. Show that \(F_k = f(x_{k+1/2}) + O(\Delta x^2) \). Hint: it will be easier if you use a variable \(y = x - x_{k+1/2} \) and perform Taylor series expansions about \(x = x_{k+1/2}, y = 0 \).

4. Find a second order accurate estimate of \(f(x_k) \) in terms of cell averages. The estimate will be different for the interior points, \(x_1, \ldots, x_{n-1} \) and the boundary points \(x_0 \) and \(x_n \). For the interior points, find an approximation

\[
f(x_k) = a F_{k-1} + b F_k + O(\Delta x^2) .
\]

The estimate of \(f(0) \) should use \(F_0 \) and \(F_1 \).
5. If we wish to use the interior estimation formula at \(x = 0 \), which would be \(f(0) \approx aF_{-1} + bF_0 \), we face the problem that \(F_{-1} \) is not known. We can circumvent this problem by extrapolating a value for \(F_{-1} \) using known values values \(F_0, F_1, \) etc. as in part 2. For example, suppose we use \(F_0, F_1, \) and \(F_2 \) to calculate \(\hat{F}_{-1} \approx F_{-1} \), then \(f(0) \approx \hat{f}_0 = a\hat{F}_{-1} + bF_0 \), the result will be an approximation \(\hat{f}_0 = cF_0 + dF_1 + eF_2 \). What order of extrapolation do you need to get a second order estimate of \(f(0) \)? Is this estimate the same as the second order estimate from part 4?

6. Find a fourth order estimate of \(f(x_{k+1/2}) \) using \(F \) values. First find the interior formula

\[
f(x_{k+1/2}) \approx aF_{k-1} + bF_k + cF_{k+1},
\]

that works when \(k > 0 \) and \(k < n \). Then, (as time permits) figure out what order of extrapolation and how many extrapolated values you need to achieve fourth order at the end points.