
Principles of Scientific Computing

Local Analysis

Jonathan Goodman

last revised February 15, 2006

1

Among the most common computational tasks are differentiation, interpola-
tion, and integration. The simplest methods used for these operations are finite

difference approximations for derivatives, low order polynomial interpolation,
and panel method integration. Finite difference formulas, integration rules, and
interpolation form the core of most scientific computing projects that involve
solving differential or integral equations.

The finite difference formulas (14) range from simple low order approxima-
tions (14a) – (14c) to not terribly complicated high order methods such as (14e).
Figure 2 illustrates that high order methods can be far more accurate than low
order ones. This can make the difference between getting useful answers and
not in serious large scale applications. The methods here will enable the reader
to design professional quality highly accurate methods rather than relying on
simple but often inefficient low order ones.

Many methods for these problems involve a step size, h. For each h there is
an approximation1 Â(h) ≈ A. We say Â is consistent if Â(h) → A as h → 0.
For example, we might estimate A = f ′(x) using the finite difference formula

(14a): Â(h) = (f(x + h) − f(x))/h. This is consistent, as limh→0 Â(h) is the
definition of f ′(x). The accuracy of the approximation depends on f , but the
order of accuracy does not.2 The approximation is first order accurate if the
error is nearly proportional to h for small enough h. It is second order if the
error goes like h2. When h is small, h2 ≪ h, so approximations with a higher
order of accuracy can be much more accurate.

The design of difference formulas and integration rules is based on local anal-

ysis, approximations to a function f about a base point x. These approximations
consist of the first few terms of the Taylor series expansion of f about x. The
first order approximation is

f(x + h) ≈ f(x) + hf ′(x) . (1)

The second order approximation is more complicated and more accurate:

f(x + h) ≈ f(x) + f ′(x)h +
1

2
f ′′(x)h2 . (2)

Figure 1 illustrates the first and second order approximations. Truncation error

is the difference between f(x+h) and one of these approximations. For example,
the truncation error for the first order approximation is

f(x) + f ′(x)h − f(x + h) .

To see how Taylor series are used, substitute the approximation (1) into the
finite difference formula (14a). We find

Â(h) ≈ f ′(x) = A . (3)

1In the notation of Chapter ??, Â is an estimate of the desired answer, A.
2The nominal order of accuracy may be achieved if f is smooth enough, a point that is

important in many applications.

2

0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

2

3

4

5

6

x

f

f(x) and approximations up to second order

f
constant
linear
quadratic

Figure 1: Plot of f(x) = xe2x together with Taylor series approximations of

order zero, one, and two. The base point is x = .6 and h ranges from −.3 to

.3. The symbols at the ends of the curves illustrate convergence at fixed h as the

order increases. Also, the higher order curves make closer contact with f(x) as

h → 0.

3

The more accurate Taylor approximation (2) allows us to estimate the error in
(14a). Substituting (2) into (14a) gives

Â(h) ≈ A + A1h , A1 =
1

2
f ′′(x) . (4)

This asymptotic error expansion is an estimate of Â − A for a given f and
h. It shows that the error is roughly proportional to h for small h. This
understanding of truncation error leads to more sophisticated computational
strategies. Richardson extrapolation combines Â(h) and Â(2h) to create higher
order estimates with much less error. Adaptive methods take a desired accuracy,

e, and attempt (without knowing A) to find an h with
∣∣∣Â(h) − A

∣∣∣ ≤ e. Error

expansions like (4) are the basis of many adaptive methods.
This chapter focuses on truncation error and mostly ignores roundoff. In

most practical computations that have truncation error, including numerical
solution of differential equations or integral equations, the truncation error is
much larger than roundoff. Referring to Figure ??, the practical range of h
from .01 to 10−5, the computed error is roughly 4.1 ·h, as (4) suggests is should
be. This starts to break down for the impractically small h = 10−8. More
sophisticated high order approximations reach roundoff sooner, which can be
an issue in code testing, but rarely in large scale production runs.

1 Taylor series and asymptotic expansions

The Taylor series expansion of a function f about the point x is

f(x + h) =

∞∑

n=0

1

n!
f (n)(x)hn . (5)

The notation f (n)(x) refers to the nth derivative of f evaluated at x. The partial

sum of order p is a degree p polynomial in h:

Fp(x, h) =

p∑

n=0

1

n!
f (n)(x)hn . (6)

The partial sum Fp is the Taylor approximation to f(x + h) of order p. It is a
polynomial of order p in the variable h. Increasing p makes the approximation
more complicated and more accurate. The order p = 0 partial sum is simply
F0(x, h) = f(x). The first and second order approximations are (1) and (2)
respectively.

The Taylor series sum converges if the partial sums converge to f :

lim
p→∞

Fp(x, h) = f(x + h) .

If there is a positive h0 so that the series converges whenever |h| < h0, then f is
analytic at x. A function probably is analytic at most points if there is a formula

4

for it, or it is the solution of a differential equation. Figure 1 plots a function
f(x) = xe2x together with the Taylor approximations of order zero, one, and
two. The symbols at the ends of the curves illustrate the convergence of this
Taylor series when h = ±.3. When h = .3, the series converges monotonically:
F0 < F1 < F2 < · · · → f(x + h). When h = −.3, there are approximants on
both sides of the answer: F0 > F2 > f(x + h) > F1.

It often is more useful to view the Taylor series as an asymptotic expansion

of f(x + h) valid as h → 0. We explain what this means by giving an analogy
between order of magnitude (and powers of ten) and order of approximation

(powers of h). If B1 and B2 are positive numbers, then B2 is an order of
magnitude smaller than B1 roughly if B2 ≤ .1 · B1. If E1(h) and E2(h) are
functions of h defined for |h| ≤ h0, and if there is a C so that |E2(h)| ≤
C · h · |E1(h)|, then we say that E2 is an order (or an order of approximation)
smaller than E1 as h → 0. This implies that for small enough h (|h| < 1/C)
E2(h) is smaller than E1(h). Reducing h further makes E2 much smaller than
E1. It is common to know that there is such a C without knowing what it is.
Then we do not know how small h has to be before the asymptotic relation
E2 ≪ E1 starts to hold. Figure 2 and Figure 3 show that asymptotic relations
can hold for practical values of h.

An asymptotic expansion actually is a sequence of approximations, like the
Fp(x, h), with increasing order of accuracy. One can view decimal expansions
in this way, using order of magnitude instead of order of approximation. The
expansion

π = 3.141592 · · · = 3 + 1 · .1 + 4 · (.1)2 + 1 · (.1)3 + 5 · (.1)4 + · · · (7)

is a sequence of approximations

Â0 ≈ 3

Â1 ≈ 3 + 1 · .1
Â2 ≈ 3 + 1 · .1 + 4 · (.1)2

etc.

The approximation Âp is an order of magnitude more accurate than Âp−1. The

error Âp − π is of the order of magnitude (.1)p+1, which also is the order of

magnitude of the first neglected term. The error in Â3 = 3.141 is Â3 − π ≈
6 ·10−4. This error is approximately the same as the next term, 5 ·(.1)4. Adding
the next term gives an approximation whose error is an order of magnitude
smaller:

Â3 + 5 · (.1)4 − π = Â4 − π ≈ −9 · 10−5 .

The big O (O for order) notation expresses asymptotic size relations. If
B1(h) > 0 for h 6= 0, the notation, O(B1(h)) as h → 0 refers to any function
that is less than C ·B1(h) when |h| ≤ h0 (for some C). Thus, B2(h) = O(B1(h))
as h → 0 if there is a C and an h0 > 0 so that B1(h) and B2(h) are defined and
and B2(h) ≤ C · B1(h) for |h| ≤ h0. We also write F (h) = G(h) + O(B1(h)) to

5

mean that the function B2(h) = F (h) − G(h) satisfies B2(h) = O(B1(h)). For
example, it is correct to write tan(h) = O(|h|) as h → 0 because if |h| ≤ π/4,
tan(h) ≤ 2|h|. In this case the h0 is necessary because tan(h) → ∞ as h → π/2
(no C could work for h = π/2). Also, C = 1 does not work, even though
tan(h) ≈ h for small h, because tan(h) > h.

There are two common misuses of the big O notation, and we indulge in both
below. One is to forget that h could be negative and write O(h) for O(|h|). The
other is to say B = O(hp) to mean that B and hp are of the same order, that
is both B(h) = O(hp) and hp = O(B(h)). Technically, it is correct to say that
h3 = O(h2). But this can be misleading, as h3 actually is an order smaller than
h2. It would be like saying you ran “less than ten miles” when you actually had
run less than one mile, technically true but misleading.

We change notation when we view the Taylor series as an asymptotic expan-
sion, writing

f(x + h) ∼ f(x) + f ′(x) · h +
1

2
f ′′(x)h2 + · · · . (8)

This means that the right side is an asymptotic series that may or may not
converge. It represents f(x + h) in the sense that the partial sums Fp(x, h) are
a family of approximations of increasing order of accuracy:

|Fp(x, h) − f(x + h)| = O(hp+1) . (9)

The asymptotic expansion (8) is much like the decimal expansion (7). The term
in (8)of order O(h2) is 1

2f ′′(x) · h2. The term in (7) of order of magnitude 10−2

is 4 · (.1)−2. The error in a p term approximation is roughly the first neglected
term, since all other neglected terms are at least one order smaller.

Figure 1 illustrates the asymptotic nature of the Taylor approximations.
The lowest order approximation is F0(x, h) = f(x). The graph of F0 touches
the graph of f when h = 0 but otherwise has little in common. The graph of
F1(x, h) = f(x) + f ′(x)h not only touches the graph of f when h = 0, but the
curves are tangent. The graph of F2(x, h) not only is tangent, but has the same
curvature and is a better fit for small and not so small h.

1.1 Technical points

This subsection presents two technical points for mathematically minded read-
ers. The first proves the basic fact that underlies most of the analysis in this
chapter, that the Taylor series (5) is an asymptotic expansion. The second is
two examples of asymptotic expansions that converge to the wrong answer or
do not converge at all.

The asymptotic expansion property of Taylor series comes from the Taylor
series remainder theorem.3 If the derivatives of f up to order p + 1 exist and
are continuous in the interval [x, x + h], then there is a ξ ∈ [x, x + h] so that

f(x + h) − Fp(x, h) =
1

(p + 1)!
f (p+1)(ξ)hp+1 . (10)

3See any good calculus book for a derivation and proof.

6

If we take

C =
1

(p + 1)!
max

y∈[x,x+h]

∣∣∣f (p+1)(y)
∣∣∣ ,

then we find that
|Fp(x, h) − f(x + h)| ≤ C · hp+1 .

This is the proof of (9), which states that the Taylor series is an asymptotic
expansion.

The approximation Fp(x, h) includes terms in the sum (8) up to order and
including order p. The first neglected term is the term of order p + 1, which is

1
(p+1)f

(p+1)(x). This also is the difference Fp+1 − Fp. It differs from the right

side of (10) only in ξ being replaced by x. Since ξ ∈ [x, x + h], this is a small
change if h is small. Therefore, the error in the Fp is nearly equal to the first
neglected term.

An asymptotic expansion can converge to the wrong answer or not converge
at all. We give an example of each. These are based on the fact that exponentials
beat polynomials in the sense that, for any n,

tne−t → 0 as t → ∞ .

If we take t = a/ |x| (because x may be positive or negative), this implies that

1

xn
e−a/x → 0 as x → 0 . (11)

Consider the function f(x) = e−1/|x|. This function is continuous at x = 0
if we define f(0) = 0. The derivative at zero is (using (11))

f ′(0) = lim
h→0

f(h) − f(0)

h
= lim

h→0

e−1/|h|

h
= 0 .

When x 6= 0, we calculate f ′(x) = ± 1
|x|2 e−1/|x|. The first derivative is continu-

ous at x = 0 because (11) implies that f ′(x) → 0 = f ′(0) as x → 0. Continuing
in his way, one can see that each of the higher derivatives vanishes at x = 0 and
is continuous. Therefore Fp(0, h) = 0 for any p, as f (n)(0) = 0 for all n. Thus
clearly Fp(0, h) → 0 as p → ∞. Simply put, the Taylor series converges to zero
for any h because all the terms are zero. But this is the wrong answer, since,
f(h) = e1/h > 0 if h 6= 0. The Taylor series, while asymptotic, converges to the
wrong answer.

What goes wrong here is that although the derivatives f (p) happen to take
the value zero when x = 0, they are very large for x close to zero. The remainder
theorem (??trf*lo) implies that Fp(x, h) → f(x + h) as p → ∞ if

Mp =
hp

p!
max

x≤ξ≤x+h

∣∣∣f (p)(ξ)
∣∣∣→ 0 as p → ∞.

Taking x = 0 and any h > 0, function f(x) = e−1/|x| has Mp → ∞ as p → ∞.

7

Here is an example of an asymptotic Taylor series that does not converge at
all. Consider

f(h) =

∫ 1/2

0

e−x/h 1

1 − x
dx . (12)

The integrand goes to zero exponentially as h → 0 for any fixed x. This suggests4

that most of the integral comes from values of x near zero and that we can
approximate the integral by approximating the integrand near x = 0. Therefore,
we write 1/(1 − x) = 1 + x + x2 + · · ·, which converges for all x in the range of
integration. Integrating separately gives

f(h) =

∫ 1/2

0

e−x/hdx +

∫ 1/2

0

e−x/hxdx +

∫ 1/2

0

e−x/hx2dx + · · · .

We get a simple formula for the integral of the general term e−x/hxn if we change
the upper limit from 1/2 to ∞. For any fixed n, changing the upper limit of
integration makes an exponentially small change in the integral, see problem
(6). Therefore the nth term is (for any p > 0)

∫ 1/2

0

e−x/hxndx =

∫ ∞

0

e−x/hxndx + O(hp)

= n!hn+1 + O(hp) .

Assembling these gives

f(h) ∼ h + h2 + 2h3 + · · · + (n − 1)! · hn + · · · (13)

This is an asymptotic expansion because the partial sums are asymptotic ap-
proximations:

∣∣h + h2 + 2h3 + · · · + (p − 1)! · hp − f(h)
∣∣ = O(hp+1) .

But the infinite sum does not converge; for any h > 0 we have n! · hn+1 → ∞
as n → ∞.

In these examples, the higher order approximations have smaller ranges of
validity. For (??), the three term approximation f(h) ≈ h + h2 + 2h3 is reason-
ably accurate when h = .3 but the six term approximation is less accurate, and
the ten term ”approximation” is 4.06 for an answer less than .5. The ten term
approximation is very accurate when h = .01 but the fifty term ”approximation”
is astronomical.

2 Numerical Differentiation

One basic numerical task is estimating the derivative of a function from given
function values. Suppose we have a smooth function, f(x), of a single variable,

4A more precise version of this intuitive argument is in exercise 6.

8

x. The problem is to combine several values of f to estimate f ′. These finite

difference approximations are useful in themselves, and because they underlie
methods for solving differential equations of all kinds. Several common finite
difference approximations are

f ′(x) ≈ f(x + h) − f(x)

h
(a)

f ′(x) ≈ f(x) − f(x − h)

h
(b)

f ′(x) ≈ f(x + h) − f(x − h)

2h
(c)

f ′(x) ≈ −f(x + 2h) + 4f(x + h) − 3f(x)

2h
(d)

f ′(x) ≈ −f(x + 2h) + 8f(x + h) − 8f(x − h) + f(x + 2h)

12h
(e)






(14)
The first three have simple geometric interpretations as the slope of lines con-
necting nearby points on the graph of f(x). A carefully drawn figure shows
that (14c) is more accurate than (14a). We give an analytical explanation of
this below. The last two are more technical. The formulas (14a), (14b), and
(14d) are one sided because they use values only on one side of x. The formulas
(14c) and (14e) are centered because they use points symmetrical about x and
with opposite weights.

The Taylor series expansion (8) allows us to calculate the accuracy of each
of these approximations. Let us start with the simplest (14a). Substituting (8)
into the right side of (14a) gives

f(x + h) − f(x)

h
∼ f ′(x) + h

f ′′(x)

2
+ h2 f ′′′(x)

6
+ · · · . (15)

This may be written:

f(x + h) − f(x)

h
= f ′(x) + Ea(h) ,

where

Ea(h) ∼ 1

2
f ′′(x) · h +

1

6
f ′′′(x) · h2 + · · · . (16)

In particular, this shows that Ea(h) = O(h), which means that the one sided
two point finite difference approximation is first order accurate. Moreover,

Ea(h) =
1

2
f ′′(x) · h + O(h2) , (17)

which is to say that, to leading order, the error is proportional to h and given
by 1

2f ′′(x).

9

Taylor series analysis applied to the two point centered difference approxi-
mation (14c) leads to

f ′(x) =
f(x + h) − f(x − h)

2h
+ Ec(h)

where

Ec(h) ∼ 1

6
f ′′′(x) · h2 +

1

24
f (5)(x) · h4 + · · · (18)

=
1

6
f ′′′(x) · h2 + O(h4)

This centered approximation is second order accurate, Ec(h) = O(h2). This is
one order more accurate than the one sided approximations (14a) and (14b).
Any centered approximation such as (14c) or (14e) must be at least second order

accurate because of the symmetry relation Â(−h) = Â(h). Since A = f ′(x) is

independent of h, this implies that E(h) = Â(h) − A is symmetric. If E(h) =
c · h + O(h2), then

E(−h) = −c · h + O(h2) = E(h) + O(h2) ≈ −E(h) for small h,

which contradicts E(−h) = E(h). The same kind of reasoning shows that the
O(h3) term in (18) must be zero.

A Taylor series analysis shows that the three point one sided formula (14d)
is second order accurate, while the four point centered approximation (14e) is
fourth order. Sections 3.1 and 5 give two ways to find the coefficients 4, −3,
and 8 achieve these higher orders of accuracy.

Figure 2 illustrates many of these features. The first is that the higher
order formulas (14c), (14d), and (14e) actually are more accurate when h is
small. For h = .5, the first order two point one sided difference formula is more
accurate than the second order accurate three point formula, but their proper
asymptotic ordering is established by h = .01. For h ≤ 10−5 with the fourth
order centered difference formula and h = 10−7 with the second order formula,
double precision roundoff error makes the results significantly different from
what they would be in exact arithmetic. The rows labeled Ê give the leading
order Taylor series estimate of the error. For the first order formula, (17) shows

that this is Ê(h) = 1
2f ′′(x) ·h. For the second order centered formula, (18) gives

leading order error Êc(h) = 1
6f ′′′(x) ·h2. For the three point one sided formula,

the coefficient of f ′′′(x)·h2 is 1
3 , twice the coefficient for the second order centered

formula. For the fourth order formula, the coefficient of f (5)(x) · h4 is 1
30 . The

table shows that Ê is a good predictor of E, if h is at all small, until roundoff
gets in the way. The smallest error5 in the table comes from the fourth order
formula and h = 10−5. It is impossible to have an error this small with a first

5The error would have been −3 · 10−19 rather than −6 · 10−12, seven orders of magnitude
smaller, in exact arithmetic. The best answer comes despite some catastrophic cancellation,
but not completely catastrophic.

10

h (14a) (14c) (14d) (14e)
.5 3.793849 0.339528 7.172794 0.543374
E 2.38e+00 -1.08e+00 5.75e+00 -8.75e-01

Ê 5.99e+00 -1.48e+00 -2.95e+00 -1.85e+00
.01 2.533839 1.359949 1.670135 1.415443
E 1.12e+00 -5.84e-02 2.52e-01 -2.87e-03

Ê 1.20e+00 -5.91e-02 -1.18e-01 -2.95e-03
5 · 10−3 1.999796 1.403583 1.465752 1.418128

E 5.81e-01 -1.47e-02 4.74e-02 -1.83e-04

Ê 5.99e-01 -1.48e-02 -2.95e-02 -1.85e-04
10−3 1.537561 1.417720 1.419642 1.418311
E 1.19e-01 -5.91e-04 1.33e-03 -2.95e-07

Ê 1.20e-01 -5.91e-04 -1.18e-03 -2.95e-07
10−5 1.418431 1.418311 1.418311 1.418311
E 1.20e-04 -5.95e-10 1.16e-09 -6.05e-12

Ê 1.20e-04 -5.91e-10 -1.18e-09 -2.95e-19
10−7 1.418312 1.418311 1.418311 1.418311
E 1.20e-06 2.76e-10 3.61e-09 8.31e-10

Ê 1.20e-06 -5.91e-14 -1.18e-13 −2.95 · 10−27

Figure 2: Estimates of f ′(x) with f(x) = sin(5x) and x = 1 using formulas
(14a), (14c), (14d), and (14e). Each group of three rows corresponds to one h
value. The top row gives the finite difference estimate off ′(x), the middle row

gives the error E(h), and the third row is Ê(h), the leading Taylor series term in
the error formula. All calculations were done in double precision floating point
arithmetic.

or second order formula no matter what the step size. Note that the error in
the (14e) column increased when h was reduced from 10−5 to 10−7 because of
roundoff.

A difference approximation may not achieve its expected order of accuracy
if the requisite derivatives are infinite or do not exist. As an example of this,
let f(x) be the function

f(x) =

{
0 if x ≤ 0
x2 if x ≥ 0 .

If we want f ′(0) , the formulas (1c) and (1e) are only first order accurate despite
their higher accuracy for smoother functions. This f has a mild singularity, a
discontinuity in its second derivative. Such a singularity is hard to spot on a
graph, but may have a drastic effect on the numerical analysis of the function.

We can use finite differences to approximate higher derivatives such as

f(x + h) − 2f(x) + f(x − h)

h2
= f ′′(x) +

h2

12
f (4) + O(h4) ,

11

and to estimate partial derivatives of functions depending on several variables,
such as

f(x + h, y) − f(x − h, y)

2h
∼ ∂

∂x
f(x, y) +

h2

3

∂3f

∂x3
(x, y) + · · · .

2.1 Mixed partial derivatives

There are several new features that arise only when evaluating mixed partial
derivatives or sums of partial derivatives in different variables. For example,
suppose we want to evaluate6 fxy = ∂x∂yf(x, y). Rather than using the same h
for both7 x and y, we use step size ∆x for x and ∆y for y. The first order one
sided approximation for fy is

fy ≈ f(x, y + ∆y) − f

∆y
.

We might hope this, and

fy(x + ∆x, y) ≈ f(x + ∆x, y + ∆y) − f(x + ∆x, y)

∆y
,

are accurate enough so that

∂x

(
∂yf

)
≈ fy(x + ∆x, y) − fy

∆x

≈

f(x + ∆x, y + ∆y) − f(x + ∆x, y)

∆y
− f(x, y + ∆y) − f

∆y

∆x

fxy ≈ f(x + ∆x, y + ∆y) − f(x + ∆x, y) − f(x, y + ∆y) + f

∆x∆y
,(19)

is consistent8.
To understand the error in (19), we need the Taylor series for functions of

more than one variable. The rigorous remainder theorem is more complicated,
but it suffices here to use all of the “first” neglected terms. The expansion is

f(x + ∆x, y + ∆y) ∼ f + ∆xfx + ∆yfy

+
1

2
∆x2fxx + ∆x∆yfxy +

1

2
∆y2fyy

6We abbreviate formulas by denoting partial derivatives by subscripts, ∂xf = fx, etc., and
by leaving out the arguments if they are (x, y), so f(x+∆x, y)− f(x, y) = f(x+∆x, y)− f ≈
∆xfx(x, y) = ∆xfx.

7The expression f(x+h, y +h) does not even make sense if x and y have different physical
units.

8The same calculation shows that the right side of (19) is an approximation of ∂y (∂xf).
This is one proof that ∂y∂xf = ∂y∂xf .

12

+
1

6
∆x3fxxx +

1

2
∆x2∆yfxxy +

1

2
∆x∆y2fxyy +

1

6
∆y3fyyy

+ · · ·

+
1

p!

p∑

k=0

(
p

k

)
∆xn−k∆yk∂p−k

x ∂k
yf + · · · .

If we keep just the terms on the top row on the right, the second order terms on
the second row are the first neglected terms, and (using the inequality ∆x∆y ≤
∆x2 + ∆y2):

f(x + ∆x, y + ∆y) = f + ∆xfx + ∆yfy + O
(
∆x2 + ∆y2

)
.

Similarly,

f(x + ∆x, y + ∆y)

= f + ∆xfx + ∆yfy +
1

2
∆x2fxx + ∆x∆yfxy +

1

2
∆y2fyy

+ O
(
∆x3 + ∆y3

)
.

Of course, the one variable Taylor series is

f(x + ∆x, y) = f + ∆xfx +
1

2
∆x2fxx + O

(
∆x3

)
, etc.

Using all these, and some algebra, gives

f(x + ∆x, y + ∆y) − f(x + ∆x, y) − f(x, y + ∆y) + f

∆x∆y

= fxy + O

(
∆x3 + ∆y3

∆x∆y

)
. (20)

This shows that the approximation (19) is first order, at least if ∆x is roughly
proportional to ∆y. The fuller Taylor expansion above gives a quantitative
estimate of the error:

f(x + ∆x, y + ∆y) − f(x + ∆x, y) − f(x, y + ∆y) + f

∆x∆y
− fxy

≈ 1

2
(∆xfxxy + ∆yfxyy) . (21)

This formula suggests (and it is true) that in exact arithmetic we could let
∆x → 0, with ∆y fixed but small, and still have a reasonable approximation to
fxy. The less detailed version (20) suggests that might no be so.

A partial differential equation may involve a differential operator that is a
sum of partial derivatives. One way to approximate a differential operator is
to approximate each of the terms separately. for example, the Laplace operator

13

(or Laplacian), which is △ = ∂2
x + ∂2

y in two dimensions, may be approximated
by

△f(x, y) = ∂2
xf + ∂2

yf

≈ f(x + ∆x, y) − 2f + f(x − ∆x, y)

∆x2

+
f(x, y + ∆y) − 2f + f(x, y − 2∆y)

∆y2
.

If ∆x = ∆y = h (x and y have the same units in the Laplace operator), then
this becomes

△f ≈ 1

h2

(
f(x + h, y) + f(x − h, y) + f(x, y + h) + f(x, y − h) − 4f

)
. (22)

This is the standard five point approximation (seven points in three dimensions).
The leading error term is

h2

12

(
∂4

xf + ∂4
yf
)

. (23)

The simplest heat equation (or diffusion equation) is ∂tf = 1
2∂2

xf . The space

variable, x, and the time variable, t have different units. We approximate the
differential operator using a first order forward difference approximation in time
and a second order centered approximation in space. This gives

∂tf − 1

2
∂2

xf ≈ f(x, t + ∆t) − f

∆t
− f(x + ∆x, t) − 2f + f(x − ∆x, t)

2∆x2
. (24)

The leading order error is the sum of the leading errors from time differencing

(1
2∆t∂2

t f) and space differencing (∆x2

24 ∂4
xf), which is

1

2
∆t∂2

t f − ∆x2

24
∂4

xf . (25)

For many reasons, people often take ∆t proportional to ∆x2. In the simplest
case of ∆t = ∆x2, the leading error becomes

∆x2

(
1

2
∂2

t f − 1

24
∂4

xf

)
.

This shows that the overall approximation (24) is second order accurate if we
take the time step to be the square of the space step.

3 Error Expansions and Richardson Extrapola-

tion

The error expansions (16) and (18) above are instances of a common situation
that we now describe more systematically and abstractly. We are trying to
compute A and there is an approximation with

Â(h) → A as h → 0 .

14

The error is E(h) = Â(h) −A. A general asymptotic error expansion in powers
of h has the form

Â(h) ∼ A + hp1A1 + hp2A2 + · · · , (26)

or, equivalently,
E(h) ∼ hp1A1 + hp2A2 + · · · .

As with Taylor series, the expression (26) does not imply that the series on the

right converges to Â(h). Instead, the asymptotic relation (26) means that, as
h → 0,

Â(h) − (A + hp1A1) = O(hp2) (a)

Â(h) − (A + hp1A1 + hp2A2) = O(hp3) (b)

and so on.






(27)

It goes without saying that 0 < p1 < p2 < · · ·. The statement (27a) says not

only that A + A1h
p1 is a good approximation to Â(h), but that the error has

the same order as the first neglected term, A2h
p2 . The statement (27b) says

that including the O(hp2) term improves the approximation to O(hp3), and so
on.

Many asymptotic error expansions arise from Taylor series manipulations.
For example, the two point one sided difference formula error expansion (15)
gives p1 = 1, A1 = 1

2f ′′(x), p2 = 2, A2 = 1
6f ′′′(x), etc. The error expansion

(18) for the two point centered difference formula implies that p1 = 2, p2 = 4,
A1 = 1

6f ′′′(x), and A2 = 1
24f (5)(x). The three point one sided formula has

p1 = 2 because it is second order accurate, but p2 = 3 instead of p2 = 4. The
fourth order formula has p1 = 4 and p2 = 6.

It is possible that an approximation is pth order accurate in the big O sense,
|E(h)| ≤ C · hp, without having an asymptotic error expansion of the form
(26). Figure 4 has an example showing that this can happen when the function
f(x) is not sufficiently smooth. Most of the extrapolation and debugging tricks
described here do not apply in those cases.

We often work with asymptotic error expansions for which we know the
powers pk but not the coefficients, Ak. For example, in finite difference approxi-
mations, the Ak depend on the function f but the pk do not. Two computational
techniques that use this information are are Richardson extrapolation and con-

vergence analysis. Richardson extrapolation combines Â(h) approximations for
several values of h to produce a new approximation that has greater order of
accuracy than Â(h). Convergence analysis is a debugging method that tests the
order of accuracy of numbers produced by a computer code.

3.1 Richardson extrapolation

Richardson extrapolation increases the order of accuracy of an approximation
provided that the approximation has an asymptotic error expansion of the form

15

(26) with known pk. In its simplest form, we compute Â(h) and Â(2h) and then
form a linear combination that eliminates the leading error term. Note that

Â(2h) = A + (2h)p1 A1 + (2h)p2 A2 + · · ·
= A + 2p1hp1A1 + 2p2hp2A2 + · · · ,

so

2p1Â(h) − Â(2h)

2p1 − 1
= A +

2p1 − 2p2

2p1 − 1
hp2A2 +

2p3 − 2p2

2p1 − 1
hp3A3 + · · · .

In other words, the extrapolated approximation

Â(1)(h) =
2p1Â(h) − Â(2h)

2p1 − 1
(28)

has order of accuracy p2 > p1. It also has an asymptotic error expansion,

Â(1)(h) = A + hp2A
(1)
2 + hp3A

(1)
3 + · · · ,

where A
(1)
2 =

2p1 − 2p2

2p1 − 1
A2, and so on.

Richardson extrapolation can be repeated to remove more asymptotic error
terms. For example,

Â(2)(h) =
2p2Â(1)(h) − Â(1)(2h)

2p2 − 1

has order p3. Since Â(1)(h) depends on Â(h) and Â(2h), Â(2)(h) depends on

Â(h), Â(2h), and Â(4h). It is not necessary to use powers of 2, but this is
natural in many applications. Richardson extrapolation will not work if the
underlying approximation, Â(h), has accuracy of order hp in the O(hp) sense
without at least one term of an asymptotic expansion.

Richardson extrapolation, allows us to derive higher order difference approx-
imations from low order ones. Start, for example, with the first order one sided
approximation to f ′(x) given by (14a). Taking p1 = 1 in (28) leads to the second
order approximation

f ′(x) ≈ 2 · f(x + h) − f(x)

h
− f(x + 2h) − f(x)

2h

=
−f(x + 2h) + 4f(x + h) − 3f(x)

2h
,

which is the second order three point one sided difference approximation (14d).
Starting with the second order centered approximation (14c) (with p1 = 2 and
p2 = 4) leads to the fourth order approximation (14e). The second order one
sided formula has p1 = 2 and p2 = 3. Applying Richardson extrapolation to it
gives a one sided formula that uses f(x + 4h), f(x + 2h), f(x + h), and f(x) to

16

give a third order approximation. A better third order one sided approximation
would use f(x + 3h) instead of f(x + 4h). Section 5 explains how to do this.

Richardson extrapolation may also be applied to the output of a complex
code. Run it with step size h and 2h and apply (28) to the output. This
is sometimes applied to stochastic differential equations as an alternative to
making up high order schemes from scratch, which can be time consuming and
intricate.

3.2 Convergence analysis

We can test a code, and the algorithm it is based on, using ideas related to
Richardson extrapolation. A naive test would be to do runs with decreasing h
values to check whether Â(h) → A as h → 0. A convergence analysis based on
asymptotic error expansions can be better. For one thing, we might not know
A. Even if we run a test case where A is known, it is common that a code with
mistakes limps to convergence, but not as accurately or reliably as the correct
code would. If we bother to write a code that is more than first order accurate,
we should test that we are getting the order of accuracy we worked for.

There are two cases, the case where A is known and the case where A is not
known. While we probably would not write a code for a problem to which we
know the answer, it is often possible to apply a code to a problem with a known
answer for debugging. In fact, a code should be written modularly so that it is
easy to apply it to a range or problems broad enough to include some trivial
and at least one nontrivial problem9 with a known answer.

If A is known, we can run the code with step size h and 2h and, from the
resulting approximations, Â(h) and Â(2h), compute

E(h) ≈ A1h
p1 + A2h

p2 + · · · ,

E(2h) ≈ 2p1A1h
p1 + 2p2A2h

p2 + · · · .

For small h the first term is a good enough approximation so that the ratio
should be approximately the characteristic value

R(h) =
E(2h)

E(h)
≈ 2p1 . (29)

Figure 3 is a computational illustration of this phenomenon. As h → 0, the
ratios converge to the expected result 2p1 = 23 = 8. Figure 4 shows what may
happen when we apply this convergence analysis to an approximation that is
second order accurate in the big O sense without having an asymptotic error
expansion. The error gets very small but the error ratio does not have simple
behavior as in Figure 3.

9A trivial problem is one that is too simple to test the code fully. For example, if you
compute the derivative of a linear function, any of the formulae (14a) – (14e) would give the
exact answer. The fourth order approximation (14e) gives the exact answer for any polynomial
of degree less than five.

17

h Error: E(h) Ratio: E(h)/E(h/2)

.1 4.8756e-04 3.7339e+00
.05 1.3058e-04 6.4103e+00
.025 2.0370e-05 7.3018e+00
.0125 2.7898e-06 7.6717e+00

6.2500e-03 3.6364e-07 7.8407e+00
3.1250e-03 4.6379e-08 7.9215e+00
1.5625e-03 5.8547e-09 7.9611e+00
7.8125e-04 7.3542e-10 ———-

Figure 3: Convergence study for a third order accurate approximation. As
h → 0, the ratio converges to 23 = 8. The h values in the left column decrease
by a factor of two from row to row.

h Error: E(h) Ratio: E(h)/E(h/2)

.1 1.9041e-02 2.4014e+00
.05 7.9289e-03 1.4958e+01
.025 5.3008e-04 -1.5112e+00
.0125 -3.5075e-04 3.0145e+00

6.2500e-03 -1.1635e-04 1.9880e+01
3.1250e-03 -5.8529e-06 -8.9173e-01
1.5625e-03 6.5635e-06 2.8250e+00
7.8125e-04 2.3233e-06 ———-

Figure 4: Convergence study for an approximation that is second order accurate
in the sense that |E(h)| = O(h2) but that has no asymptotic error expansion.
The h values are the same as in Figure 3. The errors decrease in an irregular
fashion.

Convergence analysis can be applied even when A is not known. In this case
we need three approximations, Â(4h), Â(2h), and Â(h). Again assuming the
existence of an asymptotic error expansion (26), we get, for small h,

R′(h) =
Â(4h) − Â(2h)

Â(2h) − Â(h)
≈ 2p1 . (30)

4 Integration

Numerical integration means finding approximations for quantities such as

I =

∫ b

a

f(x)dx .

18

Rectangle Îk = hkf(xk) 1st order

Trapezoid Îk =
hk

2
(f(xk) + f(xk+1)) 2nd order

Midpoint Îk = hkf(xk+1/2) 2nd order

Simpson Îk ≈ hk

6

(
f(xk) + 4f(xk+1/2) + f(xk+1)

)
4th order

2 point GQ Îk =
hk

2

(
f(xk+1/2 − hkξ) + f(xk+1/2 + hkξ)

)
4th order

3 point GQ Îk =
hk

18

(
5f(xk+1/2 − hkη) + 8f(xk+1/2) + 5f(xk+1/2 + hkη)

)
6th order

Figure 5: Common panel integration rules. The last two are Gauss quadrature
(Gauss – Legendre to be precise) formulas. The definitions are ξ = 1

2
√

3
and

η = 1
2

√
3
5 .

We discuss only panel methods here, though there are other elegant methods.
In a panel method, the integration interval, [a, b], is divided into n subintervals,
or panels, Pk = [xk, xk+1], where a = x0 < x1 < · · · < xn = b. If the panel Pk

is small, we can get an accurate approximation to

Ik =

∫

Pk

f(x)dx =

∫ xk+1

xk

f(x)dx (31)

using a few evaluations of f inside Pk. Adding these approximations gives an
approximation to I:

Î =

n−1∑

k=0

Îk . (32)

Some of the more common panel integral approximations are given in Figure
5, where we write xk+1/2 = (xk+1 + xk)/2 for the midpoint of the panel and
hk = xk+1 − xk is the width. Note that xk is the left endpoint of Pk and the
right endpoint of Pk−1. In the trapezoid rule and Simpon’s rule, we need not
evaluate f(xk) twice.

For our error analysis, we assume that all the panels are the same size

h = ∆x = |Pk| = xk+1 − xk for all k.

Given this restriction, not every value of h is allowed because b− a = nh and n
is an integer. When we take h → 0, we will assume that h only takes allowed
values h = (b − a)/n. The local truncation error is the integration error over
one panel. The overall global error is the sum of the local truncation errors in
all the panels. The global error usually is one power of h larger than the local
truncation error. If the error per panel is O(hq), then the total error will be of
the order of hq multiplied by n, the number of panels. Since n = (b− a)/h, this
suggests that the global error will be of order hq · (b − a)/h = O(hq−1).

19

For the local truncation error analysis, let P = [x∗, x∗ + h] be a generic
panel. The panel integration rule approximates the panel integral

IP =

∫

P

f(x)dx =

∫ x∗+h

x∗

f(x)dx

with the approximation, ÎP . For example, the rectangle rule (top row of Figure
5) has panel integration rule

∫ x∗+h

x∗

f(x)dx ≈ ÎP (h) = hf(x∗) .

To estimate the difference between IP and ÎP (h), we expand f in a Taylor series
about x∗:

f(x) ∼ f(x∗) + f ′(x∗)(x − x∗) +
1

2
f ′′(x∗)(x − x∗)

2 + · · · .

Integrating this term by term leads to

IP ∼
∫

P

f(x∗)dx +

∫

P

f ′(x∗)(x − x∗)dx + · · ·

= f(x∗)h +
1

2
f ′(x∗)h

2 +
1

6
f ′′(x∗)h

3 + · · · .

The error in integration over this panel then is

E(P, h) = ÎP (h) − IP ∼ −1

2
f ′(x∗)h

2 − 1

6
f ′′(x∗)h

3 − · · · . (33)

This shows that the local truncation error for the rectangle rule is O(h2) and
identifies the leading error coefficient.

E = Î − I

=
n−1∑

n=0

Îk − Ik

E ∼ −
n−1∑

k=0

1

2
f ′(xk)h2 −

n−1∑

k=0

1

6
f ′′(xk)h3 − · · · . (34)

We sum over k and use simple inequalities to get the order of magnitude of the
global error:

|E| <≈ 1

2

n−1∑

k=0

|f ′(xk)| · h2

≤ n · 1

2
max

a≤x≤b
|f ′(x)| · h2

=
b − a

h
O(h2)

= O(h) .

20

This shows that the rectangle rule is first order accurate overall.
Looking at the global error in more detail leads to an asymptotic error

expansion. Applying the rectangle rule error bound to another function, g(x),
we have

n−1∑

k=0

g(xk)h =

∫ b

a

g(x)dx + O(h) .

Taking g(x) = f ′(x) gives

n−1∑

k=0

f ′(xk)h =

∫ b

a

f ′(x)dx + O(h) = f(b) − f(a) + O(h) .

From (34) we have

E ≈ −
(

n−1∑

k=0

f ′(xk)h

)
h

2

≈ −
(∫ b

a

f ′(x)dx

)
h

2

E ≈ −1

2
(f(b) − f(a))h . (35)

This gives the first term in the asymptotic error expansion. It shows that the
leading error not only is bounded by h, but roughly is proportional to h. It also
demonstrates the curious fact that if f is differentiable then the leading error
term is determined by the values of f at the endpoints and is independent of
the values of f between. This is not true if f has a discontinuity in the interval
[a, b].

To get the next term, apply (34) to the error itself, i.e.

n−1∑

k=0

f ′(xk)h =

∫ b

a

f ′(x)dx − h

2
(f ′(b) − f ′(a)) + O(h2)

= f(b) − f(a) − h

2
(f ′(b) − f ′(a)) + O(h2) .

In the same way, we find that

n−1∑

k=0

f ′′(xk)
h3

6
= (f ′(b) − f ′(a))

h2

6
+ O(h3) .

Combining all these gives the first two terms in the error expansion:

E(h) ∼ −1

2
(f(b) − f(a))h +

1

12
(f ′(b) − f ′(a))h2 + · · · . (36)

It is clear that this procedure can be used to continue the expansion as far
as we want, but you would have to be very determined to compute, for example,

21

n Computed Integral Error Error/h (E − A1h)/h2 (E − A1h − A2h
2)/h3

10 3.2271 -0.2546 -1.6973 0.2900 -0.7250
20 3.3528 -0.1289 -1.7191 0.2901 -0.3626
40 3.4168 -0.0649 -1.7300 0.2901 -0.1813
80 3.4492 -0.0325 -1.7354 0.2901 -0.0907

160 3.4654 -0.0163 -1.7381 0.2901 -0.0453

Figure 6: Computational experiment illustrating the asymptotic error expansion
for rectangle rule integration.

n Computed Integral Error Error/h (E − A1h)/h2

10 7.4398e-02 -3.1277e-02 -3.1277e-01 -4.2173e-01
20 9.1097e-02 -1.4578e-02 -2.9156e-01 -4.1926e-01
40 9.8844e-02 -6.8314e-03 -2.7326e-01 -1.0635e-01
80 1.0241e-01 -3.2605e-03 -2.6084e-01 7.8070e-01

160 1.0393e-01 -1.7446e-03 -2.7914e-01 -1.3670e+00
320 1.0482e-01 -8.5085e-04 -2.7227e-01 -5.3609e-01
640 1.0526e-01 -4.1805e-04 -2.6755e-01 1.9508e+00

1280 1.0546e-01 -2.1442e-04 -2.7446e-01 -4.9470e+00
2560 1.0557e-01 -1.0631e-04 -2.7214e-01 -3.9497e+00
5120 1.0562e-01 -5.2795e-05 -2.7031e-01 1.4700e+00

Figure 7: Computational experiment illustrating the breakdown of the asymp-
totic expansion for a function with a continuous first derivative but discontinu-
ous second derivative.

the coefficient of h4. An elegant and more systematic discussion of this error
expansion is carried out in the book of Dahlquist and Bjork. The resulting error
expansion is called the Euler McLaurin formula. The coefficients 1/2, 1/12, and
so on, are related to the Bernoulli numbers.

The error expansion (36) will not be valid if the integrand, f , has singularities
inside the domain of integration. Suppose, for example, that a = 0, b = 1,
u = 1/

√
2, and f(x) = 0 for x ≤ u and f(x) =

√
x − u for x ≥ u. In this case

the error expansion for the rectangle rule approximation to
∫ 1

0 f(x)dx has one
valid term only. This is illustrated in Figure 7. The “Error/h” column shows
that the first coefficient, A1, exists. Moreover, A1 is given by the formula (36).
The numbers in the last column do not tend to a limit. This shows that the
coefficient A2 does not exist. The error expansion does not exist beyond the
first term.

The analysis of the higher order integration methods listed in Figure 5 is
easier if we use a symmetric basic panel. From now on, the panel of length h
will have x∗ in the center, rather at the left end, that is

P = [x∗ − h/2, x∗ + h/2] .

If we now expand f(x) in a Taylor series about x∗ and integrate term by term,

22

we get

∫

P

f(x)dx =

∫ x∗+ h

2

x=x∗−h

2

f(x)dx ∼ f(x∗)h +
f ′′(x∗)

24
h3 +

f (4)(x∗)

384
h5 + · · · .

For the midpoint rule, this leads to a global error expansion in even powers of
h, E ≈ A1h

2 + A2h
4 + · · ·, with A1 = (f ′(b)− f ′(a))/24. Each of the remaining

panel methods is symmetric about the center of the panel. This implies that
each of them has local truncation error containing only odd powers of h and
global error containing only even powers of h.

The leading power of h in the error expansion is the order of accuracy. It can
be determined by a simple observation: the order of the local truncation error is
one more than the degree of the lowest monomial that is not integrated exactly
by the panel method. For example, the rectangle rule integrates f(x) = x0 ≡ 1
exactly but gets f(x) = x1 ≡ x wrong. The order of the lowest monomial not
integrated exactly is 1 so the local truncation error is O(h2) and the global
error is O(h). The midpoint rule integrates x0 and x1 correctly but gets x2

wrong. The order of the lowest monomial not integrated exactly is 2 so the
local truncation error is O(h3) and the global error is O(h2). If the generic
panel has x∗ in the center, then

∫

P

(x − x∗)
n

dx

is always done exactly if n is odd. This is because both the exact integral and
its panel method approximation are zero by symmetry.

To understand why this rule works, think of the Taylor expansion of f(x)
about the midpoint, x∗. This approximates f by a sum of monomials. Applying
the panel integral approximation to f is the same as applying the approxima-
tion to each monomial and summing the results. Moreover, the integral of a
monomial (x− x∗)n over P is proportional to hn+1, as is the panel method ap-
proximation to it, regardless of whether the panel method is exact or not. The
first monomial that is not integrated exactly contributes something proportional
to hn+1 to the error.

Using this rule it is easy to determine the accuracy of the approximations in
Figure 5. The trapezoid rule integrates constants and linear functions exactly,
but it gets quadratics wrong. This makes the local truncation error third order
and the global error second order. The Simpson’s rule coefficients 1/6 and 2/3
are designed exactly to integrate constants and quadratics exactly, which they
do. Simpson’s rule integrates cubics exactly (by symmetry) but gets quartics
wrong. This gives Simpson’s rule fourth order global accuracy. The two point
Gauss quadrature also does constants and quadratics correctly but quartics
wrong (check this!). The three point Gauss quadrature rule does constants,
quadratics, and quartics correctly but gets (x − x∗)6 wrong. That makes it
sixth order accurate.

23

5 The method of undetermined coefficients

The method of undetermined coefficients is a general way to find an approxima-
tion formula of a desired type. Suppose we want to estimate some A in terms
of given data g1(h), g2(h), The method is to assume a linear estimation
formula of the form

Â(h) = a1(h)g1(h) + a2(h)g2(h) + · · · , (37)

then determine the unknown coefficients ak(h) by matching Taylor series up to
the highest possible order. The coefficients often take the form of a constant
times some power of h: ak(h) = akhpk . The algebra is simpler if we guess or

figure out the powers first. The estimator is consistent if Â(h) − A → 0 as
h → ∞. Generally (but not always), being consistent is the same as being at
least first order accurate. At the end of our calculations, we may discover that
there is no consistent estimator of the desired type.

We illustrate the method in a simple example: estimate f ′(x) from g1 = f(x)
and g2 = f(x + h). As above, we will leave out the argument x whenever
possible and write f for f(x), f ′ for f ′(x), etc. The estimator is (dropping the
x argument)

f ′ ≈ Â = a1(h)f + a2(h)f(x + h) .

Now expand in Taylor series:

f(x + h) = f + f ′h +
1

2
f ′′ + · · · .

The estimator is

Â = a1(h)f + a2(h)f + a2(h)f ′h + a2(h)f ′′h2 + · · · . (38)

Looking at the right hand side, we see various coefficients, f , f ′, and so on.
Since the relation is supposed to work whatever the values of f , f ′, etc. may be,
we choose a1 and a2 so that the coefficient of f is zero. From (38), this leads to

0 = a1(h) + a2(h) .

To make the estimator consistent, we try

1 = a2(h)h .

These two conditions lead to

a2 =
1

h
, a1 =

−1

h
, (39)

so the estimate is

f ′(x) ≈ Â =
−1

h
f(x) +

1

h
f(x + h)

=
f(x + h) − f(x)

h
.

24

This is the first order one sided difference approximation we saw earlier. Plug-
ging the values (39) into (38) shows that the estimator satisfies Â = f ′ + O(h),
which is the first order accuracy we found before.

A more complicated problem is to estimate f ′(x) from f(x), f(x−h), f(x+
h), f(x+2h). This is not centered nor is it completely one sided, but it is biased
to one side. It has proven useful in high accuracy wave simulations. This time
we guess that all the coefficients have a power 1/h, as all the estimates of f ′ so
far have this property. Thus assume the form:

f ′ ≈ Â =
1

h
(a−1f(x − h) + a0f + a1f(x + h) + a2f(x + 2h)) .

The Taylor series expansions are

f(x − h) = f − f ′h + f ′′

2 h2 − f ′′′

6 h3 + f(4)

24 h4 + · · ·
f(x + h) = f + f ′h + f ′′

2 h2 + f ′′′

6 h3 + f(4)

24 h4 + · · ·
f(x + 2h) = f + 2f ′h + 2f ′′h2 + 4f ′′′

3 h3 + 2f(4)

3 h4 + · · ·

Equating powers of h turns out to be the same as equating the coefficients of f ,
f ′, etc. from both sides:

f , O(h−1) : 0 = a−1 + a0 + a1 + a2

f ′ , O(h0) : 1 = −a−1 + a1 + 2a2

f ′′ , O(h1) : 0 = 1
2a−1 + 1

2a1 + 2a2

f ′′′ , O(h2) : 0 = −1
6 a−1 + 1

6a1 + 4
3a2

(40)

We could compute the O(h3) equation but already we have four equations for
the four unknown coefficients. If we would use the O(h3) equation in place of the
O(h2) equation, we loose an order of accuracy in the resulting approximation.

These are a system of 4 linear equations in the four unknowns a−1 through
a2, which we solve in an ad hoc way. Notice that the combination b = −a−1+a1

appears in the second and fourth equations. If we substitute b, these equations
are

1 = b + 2a2 ,

0 =
1

6
b +

4

3
a2 .

which implies that b = −8a2 and then that a2 = − 1
6 and b = 4

3 . Then, since
−4a2 = 2

3 , the third equation gives a−1 + a1 = 2
3 . Since b = 4

3 is known, we get
two equations for a−1 and a1:

a1 − a−1 =
4

3
,

a1 + a−1 =
2

3
.

25

The solution is a1 = 1 and a−1 = −1
3 . With these, the first equation leads to

a0 = −1
2 . Finally, our approximation is

f ′(x) =
1

h

(−1

3
f(x − h) − 1

2
f(x) + f(x + h) − 1

6
f(x + 2h)

)
+ O(h3) .

Note that the first step in this derivation was to approximate f by its Taylor
approximation of order 3, which would be exact if f were a polynomial of order
3. The derivation has the effect of making Â exact on polynomials of degree 3
or less. The four equations (40) arise from asking Â to be exact on constants,
linear functions, quadratics, and cubics. We illustrate this approach with the
problem of estimating f ′′(x) as accurately as possible from f(x), f(x+h), f ′(x)
and f ′(x + h). The estimator we seek has the form

f ′′ ≈ Â = af + bf(x + h) + cf ′ + df ′(x + h) .

We can determine the four unknown coefficients a, b, c, and d by requiring the
approximation to be exact on constants, linears, quadratics, and cubics. It does
not matter what x value we use, so let us take x = 0. This gives, respectively,
the four equations:

0 = a + b (constants, f = 1) ,
0 = bh + c + d (linears, f = x) ,

1 = b
h2

2
+ dh (quadratics, f = x2/2) ,

0 = b
h3

6
+ d

h2

2
(cubics, f = x3/6) .

Solving these gives

a =
−6

h2
, b =

6

h2
, c =

−4

h
, d =

−2

h
.

and the approximation

f ′′(x) ≈ 6

h2

(
−f(x) + f(x + h)

)
− 2

h

(
2f ′(x) + f ′(x + h)

)
.

A Taylor series calculation shows that this is second order accurate.

6 Adaptive parameter estimation

In most real computations, the computational strategy is not fixed in advance,
but is adjusted adaptively as the computation proceeds. If we are using one of

the approximations (̂A)(h), we might not know an appropriate h when we write
the program, and the user might not have the time or expertise to choose h for
each application. For example, exercise 12 involves hundreds or thousands of
numerical integrations. It is out of the question for the user to experiment man-
ually to find a good h for each one. We need instead a systematic computational
procedure for finding an appropriate step size.

26

Suppose we are computing something about the function f , a derivative or
an integral. We want a program that takes f , and a desired level of accuracy10,

e, and returns Â with
∣∣∣Â − A

∣∣∣ ≤ e with a high degree of confidence. We have

Â(h) that we can evaluate for any h, and we want an automatic way to choose

h so that
∣∣∣Â(h) − A

∣∣∣ ≤ e. A natural suggestion would be to keep reducing h

until the answer stops changing. We seek a quantitative version of this.
Asymptotic error expansions of Section 3 give one approach. For example, if

Â(h) is a second order accurate approximation to an unknown A and h is small
enough we can estimate the error using the leading term:

E(h) = Â(h) − A ≈ A1h
2 .

We can estimate A1h
2 from Â(h) and Â(2h) using the ideas that give (28). The

result is the Richardson extrapolation error estimate

E(h) ≈ A1h
2 ≈ 1

3

(
Â(2h) − Â(h)

)
. (41)

The adaptive strategy would be to keep reducing h by a factor of two until the
estimated error (41) is within the tolerance11:

for (

evaluate Â(2h) and Â(h) ; // initialize∣∣∣Â(2h) − Â(h)
∣∣∣ ≥ 3ǫ ; // stopping test

{ h = h/2; evaluate Â(h) } ; // increment

) ;

(42)

A natural strategy might be to stop when
∣∣∣Â(2h) − Â(h)

∣∣∣ ≤ e. Our quantitative

asymptotic error analysis shows that this strategy is off by a factor of 3. We

achieve accuracy roughly e when we stop at
∣∣∣Â(2h) − Â(h)

∣∣∣ ≤ 3e. This is

because Â(h) is more accurate than Â(2h).
We can base reasonably reliable software on refinements of the basic strategy

(42). Some drawbacks of (42) are that

1. It needs an initial guess, a starting value of h.

2. It may be an infinite loop.

3. It might terminate early if the initial h is outside the asymptotic range

where error expansions are accurate.

4. If Â(h) does not have an asymptotic error expansion, the program will
not detect this.

10This is absolute error. We also could seek a bound on relative error:
∣∣Â − A

∣∣ / |A| ≤ ǫ.
11In the increment part we need not evaluate Â(2h) because this is what we called Â(h)

before we replaced h with h/2.

27

5. It does not return the best possible estimate of A.

A plausible initial guess, h0, will depend on the scales (length or time, etc.)
of the problem. For example 10−10 meters is natural for a problem in atomic
physics but not in airplane design. The programmer or the user should supply
h0 based on understanding of the problem. The programmer can take h0 = 1
if he or she thinks the user will use natural units for the problem (Ångströms
for atomic physics, meters for airplanes). It might happen that you need h =
h0/1000 to satisfy (42), but you should give up if h = h0 · ǫmach. For integration
we need an initial n = (b − a)/h. It might be reasonable to take n0 = 10, so
that h0 = (b − a)/10.

Point 2 says that we need some criterion for giving up. As discussed more in
Section 7 we should anticipate the ways our software can fail and report failure.
When to give up should depend on the problem. For numerical differentiation,
we can stop when roundoff or propagated error from evaluating f (see Chapter
??, Section?) creates an error as big as the answer. For integration limiting
the number of refinements to 20, would limit the number of panels to n0 · 220 ≈
n0 · 106. The revised program might look like

h = h0;

hMin = 10*macheps*h0; //macheps = machine precision

while
(∣∣∣Â(2h) − Â(h)

∣∣∣ ≥ 3e
)

if (h <= hMin) {
Print an error message.
errorCode = HMIN REACHED; return -1;}

h = h/2 ;
return A(h) ;

(43)

h = h0;

hMin = 10*macheps*h0; //macheps = machine precision

for (

evaluate Â(2h) and Â(h) ; // initialize∣∣∣Â(2h) − Â(h)
∣∣∣ ≥ 3ǫ ; // stopping test

{ h = h/2; evaluate Â(h) } ; // increment

) {
if (h <= hMin) {
Print an error message;
errorCode = HMIN REACHED;

return -1;}
}

(44)

We cannot have perfect protection from point 3, though premature termi-

nation is unlikely if h0 is sensible and e (the desired accuracy) is small enough.
A more cautious programmer might do more convergence analysis, for example
asking that the Â(4h) and Â(2h) error estimate be roughly 2p times larger than

28

the Â(2h) and Â(h) estimate. There might be irregularities in f(x), possibly
jumps in some derivative, that prevent the asymptotic error analysis but do not
prevent convergence. It would be worthwhile returning an error flag in this case,
as some commercial numerical software packages do.

Part of the risk in point 4 comes from the possibility that Â(h) converges
more slowly than the hoped for order of accuracy suggests. For example if
Â(h) ≈ A + A1h

1/2, then the error is three times that suggested by (42). The
extra convergence analysis suggested above might catch this.

Point 5 is part of a paradox afflicting many error estimation strategies. We
estimate the size of E(h) = Â(h) − A by estimating the value of E(h). This

leaves us a choice. We could ignore the error estimate (41) and report Â(h)
as the approximate answer, or we could subtract out the estimated error and
report the more accurate Â(h)− Ê(h). This is the same as applying one level of

Richardson extrapolation to Â. The corrected approximation probably is more
accurate, but we have no estimate of its error. The only reason to be dissatisfied
with this is that we cannot report an answer with error less than e until the
error is far less than e.

7 Software

There are several things a scientific programmer can do to make codes easier to
debug and more reliable. Everyone has had the experience of breaking a code,
making a change that for some reason makes the whole thing stop working. A
program that is designed to be changed is flexible, less likely to be broken in this
way. Modular programs have different pieces in separate procedures (methods,
subroutines) that can be tested separately. Many of the modules can be tested
using convergence analysis described in Section 3.2. Programmers should go far
as possible to prevent silent failure. It is better to have no answer than a wrong
one.

7.1 Flexible programming

Suppose you want to compute I =
∫ 2

0
f(x)dx using a panel method. The rect-

angle rule Î = ∆x
∑n−1

k=0 f(xk) with n = 100 could be coded:

double I = 0; // line 1

for (int k = 0; k < 100; k++) // line 2

I += .02*f(.02*k); // line 3

Here the number n = 100 is hard wired, which means built into the code in a way
that makes it hard to change on a whim. It would be easy to break this code by
changing line 2 to for (int k = 0; k < 90; k++) but forgetting to change
.02 to 2/90 ≈ .0222, or changing it in only one place: I += (2/90)*f(.02*k);.
By the way, this last has the bug that (2/90) evaluates to zero because it is an
integer divide.

A more flexible version would be:

29

int n = 100; // The number of points

double a = 0; // The left endpoint for integration

double b = 2; // The right endpoint for integration

double dx = (b - a) / n; // Width of a panel

double I = 0; // line 1

double x;

for (int k = 0; k < 100; k++) { // line 2

x = k*dx;

I += dx*f(x); // line 3

}

Changing to int n = 90; would give a correct program. Because the variable
dx has a name, you can check in the debugger that it has the correct value.
The more flexible version has a few more lines of code which take a few extra
seconds to type.

You probably will want to test each module of your program on a prob-
lem you know the answer to. For example, if you are calculating H(T) =∫ T

0 esin(x)dx, you would code it in a way that it is easy to apply to G(T) =
∫ T

0
exdx.

7.2 Modular programming

Modular programming is helpful for any software project. In scientific com-
puting we design procedures that can be tested separately on their own test
problems. For example, if we apply adaptive Richardson extrapolation as in
Section 6 for an integral, we would write a generic adaptive Richardson extrap-
olation program and test it on data that does not come from an integrator, then
we would write an integrator and test it outside the Richardson procedure. If
the two procedures work correctly separately, they have a good chance to work
well together.

Designing scientific software, or any software, involves more than choosing
data structures and procedure interfaces. You also need a testing plan. The code
should be designed so that the modules can be tested separately. For example,
even if I know my production integration code will use n = 50 panels, I might
put the number of panels as a calling argument so I can do a convergence study.

7.3 Report failure

Error handling is another indispensable part of software design. Any module
that can fail (most can) must have a way to report failure. The designer will
choose an appropriate mechanism. The simplest is just to print something and
stop the program when something goes wrong. This is not appropriate for
commercial software but could be fine for a research code that only the author
will run. More sophisticated might be to write to a log file and return an error
flag, or even to throw an exception that could be caught by the calling routine.

30

Equally important is detecting failure. This means checking and forwarding
all the internal failure reporting, such as:

double *vec; // Treat vec as an array.

vec = new double[n]; // Allocate memory for n values

if (vec == NIL) .. REPORT .. // Complain if didn’t work.

It also means checking calling arguments for plausibility:

#define MAXN 10000 /* Largest allowed # of panels */

int Integrate(// Integrate f(x)

double (*f)(double), // supply f implicitly

double *I, // return the estimated integral

int n) { // using n panels.

if (n <= 0) {

.. complain that n is too small ..;

return 1; // The error flag for negative n.

if (n > MAXN) {

cout << "In Integrate, got n = " << n << " greater than"

<< " MAXN = << MAXN << endl;

return 2; // The error flag for n too large.

. . .do the integral . . .

*I = . . . answer . . .

return 0; // error flag = 0 means it worked.

}

Of course, this only works if the calling program checks the error flag, i.e. eFlag
= Integrate(f, @I, n); if (eFlag) .. WRONG ANSWER .. ;

Lastly, it means thinking of all loops that could be infinite loops, such as

while (error > targetError){ // try to get error < targetError

... make the solution more accurate...;

}

This could be an infinite loop if targetError is too small or the asymptotic
error expansion is wrong. Instead, at least put in a trip counter

#define MAX_TRIP_COUNT 1000 /* stop a runaway refinement loop */

int tripCount = 0;

while (error > targetError) {

... make the solution more accurate...;

if (++ tripCount > MAX_TRIP_COUNT) report error & quit.

}

31

8 References and further reading

For a review of one variable calculus, I recommend the Schaum outline. The
chapter on Taylor series explains the remainder estimate clearly.

There several good old books on classical numerical analysis. Two favorites
are Numerical Methods by Germund Dahlquist and Åke Björk, and Analysis of

Numerical Methods by Gene Isaacson and Herb Keller. Particularly interesting
subjects are the symbolic calculus of finite difference operators and Gaussian
quadrature.

There are several applications of convergent Taylor series in scientific com-
puting. One example is the fast multipole method of Leslie Greengard and
Vladimir Rokhlin.

9 Exercises

1. Verify that (23) represents the leading error in the approximation (22).
Hint, this does not require multidimensional Taylor series. Why?

2. Use multidimensional Taylor series to show that the rotated five point
operator

1

2h2

(
f(x+h, y+h)+f(x+h, y−h)+f(x−h, y+h)+f(x−h, y−h)−4f

)

is a consistent approximation to △f . Use a symmetry argument to show
that the approximation is at least second order accurate. Show that the
leading error term is

h2

12

(
∂4

xf + 6∂2
x∂2

yf + ∂4
yf
)

.

3. What coefficient should we use in place of 4
3 if Â(h) is first order accurate?

Find the coefficient as a function of p, the order of accuracy.

4. Find a formula that estimates f ′′(x) using the four values f(x), f(x + h),
f(x+2h), and f(x+3h) with the highest possible order of accuracy. What
is this order of accuracy? For what order polynomials does the formula
give the exact answer?

5. Suppose we have panels Pk as in (31) and panel averages Fk =
∫

Pk

f(x)dx/(xk+1−
xk).

(a) What is the order of accuracy of Fk as an estimate of f((xk +
xk+1)/2) = f(xk+1/2)?

(b) Assuming the panels all have size h, find a higher order accurate
estimate of f(xk+1/2) using Fk, Fk−1, and Fk+1.

6. This discusses the function (12) more carefully.

32

(a) Show that the Taylor series for g(x) = 1/(1 − x) about x = 0 is the
geometric series 1/(1 − x) =

∑∞
n=0 xn, which converges for |x| < 1.

(b) Prove the simple remainder formula g(x) =
∑p

n=0 xn + Rp(x) with
Rp(x) = xp+1/(1−x). Hint: factor xp+1 out of Rp(x) =

∑∞
n=p+1 xn.

(c) Use the formula −h∂xe−x/h = e−x/h to prove that
∫∞
0 e−x/hxndx =

nh
∫∞
0

e−x/hxn−1dx, and then
∫∞
0

e−x/hxndx = n!hn+1.

(d) Use the same integration by parts and (11) to show that
∫∞
1/2 e−x/hxndx =

O(xp) for any p and n.

(e) Note that for 0 ≤ x ≤ 1/2, 1/(1 − x) ≤ 2. Use this and part b to
prove the remainder bound

∫ 1/2

0

e−x/hRp(x)dx ≤ 2

∫ 1/2

0

e−x/hxp+1dx

≤ 2

∫ ∞

0

e−x/hxp+1dx = O(hp+1) .

(f) Show that
∫ 1/2

0
e−x/hxndx =

∫∞
0

e−x/hxndx + O(xp) for any n and
p.

(g) Conclude that (13) indeed is a valid asymptotic expansion.

7. An application requires accurate values of f(x) = ex − 1 for x very close
to zero.

(a) Show that the problem of evaluating f(x) is well conditioned for small
x.

(b) How many digits of accuracy would you expect from the code f =

exp(x) - 1; for x ∼ 10−5 and for x ∼ 10−10 in single and in double
precision?

(c) Let f(x) =
∑∞

n=1 fnxn be the Taylor series about x = 0. Calculate
the first three terms, the terms involving x, x2, and x3. Let p(x) be
the degree three Taylor approximation of f(x) about x = 0.

(d) Assuming that x0 is so small that the error is nearly equal to the
largest neglected term, estimate max |f(x) − p(x)| when |x| ≤ x0.

(e) We will evaluate f(x) using

if (abs(x) > x0) f = exp(x) - 1;

else f = p3(x); // given by part c.

What x0 should we choose to maximize the accuracy of f(x) for
|x| < 1 assuming double precision arithmetic and that the expo-
nential function is evaluated to full double precision accuracy (exact
answer correctly rounded)?

33

8. Suppose that f(x) is a function that is evaluated to full machine preci-

sion but that there is ǫmach rounding error in evaluating Â = (f(x + h)−
f(x))/h. What value of h minimizes the total error including both round-
ing and truncation error? This will be h∗(ǫmach) ∼ ǫq

mach
. Let e∗(ǫmach)

be the resulting best estimate of f ′(x). Show that e∗ ∼ ǫr
mach

and find r.

9. Repeat Exercise 8 with the two point centered difference approximation to
f ′(x). Show that the best error possible with centered differencing is much
better than the best possible with the first order approximation. This is
one of the advantages of higher order finite difference approximations.

10. Verify that the two point Gauss quadrature formula of Figure 5 is exact
for monomials of degree less than six. This involves checking the functions
f(x) = 1, f(x) = x2, and f(x) = x4 because the odd order monomials are
exact by symmetry. Check that the three point Gauss quadrature formula
is exact for monomials of degree less than 8.

11. Find the replacement to adaptive halting criterion (41) for a method of
order p.

12. We want to know how the function,

f(t) =

∫ 1

0

cos
(
tx2
)
dx , (45)

behaves for large t. There is an approximation,

f(t) ∼
√

π

8t
+

1

2t
sin(t) − 1

16t2
cos(t) + · · · , (46)

that is supposed to hold for large t. We want to know how accurate this
approximation is and how large t has to be before it is useful. This exercise
goes through some of the steps that go into creating scientific software to
investigate this question numerically: (a) Design the basic code to be
modular and robust, (b) Check that is gives the right answer in one case
you can check (note: not the problem of interest), (c) Check that the
basic computational method gives the accuracy it should. (d) Write an
automatic adaptive version of the code that allows it to produce accurate
answers hands off, without manual tuning of computational parameters
(∆x in this case) for each run. (e) Do the science. To appreciate the value
of part (d), the science step involves thousands of integrations to evaluate
f(t) for various t values. Nobody wants to do a thousand runs choosing
∆x by hand for each one.

(a) Write a procedure (or “method”) to estimate f(t) using a panel inte-
gration method with uniformly spaced points. The procedure should
be well documented, robust, and clean. Robust will mean many
things in later exercises. Here is means: (i) that it should use the

34

correct number of panels even though the points xk are computed
in inexact floating point arithmetic, and (ii) that the procedure will
return an error code and possibly print an error message if one of
the calling arguments is out of range (here, probably just n ≤ 0).
It should take as inputs t and n and return the approximate inte-
gral with that t, and ∆x = 1/n. If your panel integration formula
uses endpoints of the panel, you must write the code so that f(xk) is
evaluated only once. This routine should be written so that another
person could easily substitute a different panel method or a different
integrand by changing a few lines of code.

(b) Check the correctness of the procedure from part (a) by seeing whether
it gives the right answer for small t. We can estimate f(t) for small t
using a few terms of its Taylor series. From cos(u) ≈ 1− 1

2u2+ 1
24u4+

· · ·, we get cos(tx2) ≈ 1− 1
2 t2x4 + · · ·. Integrating this approximation

over the x interval gives f(t) ≈ 1 − 1
10 t2 + · · ·. Compute the next

few terms and use them to get an approximate value of f(t) for small
t. Then write a driver program that calls both the integration pro-
cedure, and the procedure that approximates f using Taylor series,
and compares the results. Use reasonable but not huge values of n.

(c) With t = 1, do a convergence study to verify the second order accu-
racy of the trapezoid rule and the fourth order accuracy of Simpson’s
rule. This requires you to write a different driver to call the integra-
tion procedure with several values of n and compare the answers in
the manner of a convergence study. Once you have done this for the
trapezoid rule, it should take less than a minute to redo it for Simp-
son’s rule. This is how you can tell whether you have done part (a)
well.

(d) Write a procedure that uses the basic integration procedure from
part (a), together with Richardson error estimation to find an n that
gives f(t) to within a specified error tolerance. The procedure should
work by repeatedly doubling n until the estimated error, based on
comparing approximations, is less than the tolerance given. This
routine should be robust enough to quit and report failure if it is
unable to achieve the requested accuracy. The input should be t and
the desired error bound. The output should be the estimated value
of f , the number of points used, and an error flag to report failure.
Before applying this procedure to the panel integration procedure,
apply it to the fake procedure fakeInt.c or fakeInt.C. Note that
these testers have options to make the Richardson program fail or
succeed. Try it both ways, to make sure the robustness feature of your
Richardson procedure works. Include with your homework output
illustrating the behavior of your Richardson procedure when it fails.

(e) Here is the science part of the problem. Make a few plots showing
f and its approximations using one, two and all three terms on the
right side of (46) for t in the range 1 ≤ t ≤ 1000. In all cases we

35

want to evaluate f so accurately that the error in our f value is much
less than the error of the approximation (46). Note that even for a
fixed level of accuracy, more points are needed for large t. Plot the
integrand to see why.

36

