
Principles of Scientific Computing

Linear Algebra I, Theory and Conditioning

Jonathan Goodman

last revised February 22, 2006

1

1 Introduction

Linear algebra and calculus are the basic tools of quantitative science. The oper-
ations of linear algebra include solving systems of equations, finding subspaces,
solving least squares problems, factoring matrices, and computing eigenvalues
and eigenvectors. In practice most of these operations will be done by soft-
ware packages that you buy or download. This chapter discusses formulation
and condition number of the main problems in computational linear algebra.
Chapter ?? discusses algorithms.

Conditioning is the primary concern in many practical linear algebra com-
putations. Easily available linear algebra software is stable in the sense that
the results are as accurate as the conditioning of the problem allows. Unfor-
tunately, condition numbers as large as 1018 occur in not terribly large or rare
practical problems. The results of such a calculation in double precision would
be completely unreliable.

If a computational method for a well conditioned problem is unstable (much
less accurate than its conditioning allows), it is likely because one of the sub-
problems is ill conditioned. For example, the problem of computing the matrix
exponential, eA, may be well conditioned while the problem of computing the
eigenvalues and eigenvectors of A is ill conditioned. A stable algorithm for com-
puting eA in that case must avoid using the eigenvalues and eigenvectors of A,
see Exercise 12.

The condition number measures how small perturbations in the data affect
the answer. This is called perturbation theory in linear algebra. Suppose1 A is a
matrix and f(A) is the solution of a linear algebra problem involving A, such as
x that satisfies Ax = b, or λ and v that satisfies Av = λv. Perturbation theory
seeks to estimate ∆f = f(A + ∆A) − f(A) when ∆A is small. Usually, this
amounts to calculating the derivative of f with respect to A. We often do this
by applying implicit differentiation to the relevant equations (such as Ax = b).

It often is helpful to simplify the results of perturbation calculations using
simple bounds that involve vector or matrix norms. For example, suppose we
want to say that all the entries in ∆A or ∆v are small. For a vector, v, or a
matrix, A, the norm, ‖v‖ or ‖A‖, is a number that characterizes the size of v
or A. Using norms, we can say that the relative size of a perturbation in A is
‖∆A‖ / ‖A‖.

The condition number of a problem involving A depends on the problem as
well as on A. For example, the condition number of f(A) = A−1b, the problem
of finding x so that Ax = b, informally2 is given by

∥∥A
∥∥∥∥A−1

∥∥ . (1)

The problem of finding the eigenvectors of A has a condition number that does

1This notation replaces our earlier A(x). In linear algebra, A always is a matrix and x

never is a matrix.
2To get this result, we not only maximize over ∆A but also over b. If the relative error

really were increased by a factor on the order of ‖A‖
∥∥A−1

∥∥ the finite element method, which

is the main computational technique for structural analysis, would not work.

2

not resemble (1). For example, finding eigenvectors of A can be well conditioned
even when

∥∥A−1
∥∥ is infinite (A is singular).

There are several ways to represent an n × n matrix in the computer. The
simplest is to store the n2 numbers in an n × n array. If this direct storage
is efficient, we say A is dense. Much of the discussion here and in Chapter ??

applies mainly to dense matrices. A matrix is sparse if storing all its entries
directly is inefficient. A modern (2006) desktop computer has enough memory
for n2 numbers if if n is less than about3 50, 000. This makes dense matrix
methods impractical for solving systems of equations with more than 50, 000
variables. The computing time solving n = 50, 000 linear equations in this way
would be about a day. Sparse matrix methods can handle larger problems and
often give faster methods even for problems that can be handled using dense
matrix methods. For example, finite element computations often lead to sparse
matrices with orders of magnitude larger n that can be solved in minutes

One way a matrix can be sparse is for most of its entries to be zero. For
example, discretizations of the Laplace equation in three dimensions have as
few as seven non-zero entries per row, so that 7/n is the fraction of entries of A
that are not zero. Sparse matrices in this sense also arise in circuit problems,
where a non-zero entry in A corresponds to a direct connection between two
elements in the circuit. Such matrices may be stored in sparse matrix format,
in which we keep lists noting which entries are not zero and the values of the
non-zero elements. Computations with such sparse matrices try to avoid fill in.
For example, they would avoid explicit computation of A−1 because most of its
entries are not zero. Sparse matrix software has heuristics that often do very
well in avoiding fill in. The interested reader should consult the references.

In some cases it is possible to compute the matrix vector product y = Ax for
a given x efficiently without calculating the entries of A explicitly. One example
is the discrete Fourier transform (DFT) described in Chapter ??. This is a full
matrix (every entry different from zero) with n2 non-zero entries, but the FFT
(fast Fourier transform) algorithm computes y = Ax in O(n log(n)) operations.
Another example is the fast multipole method that computes forces from mutual
electrostatic interaction of n charged particles with b bits of accuracy in O(nb)
work. Many finite element packages never assemble the stiffness matrix, A.

Computational methods can be direct or iterative. A direct method would get
the exact answer in exact arithmetic using a predetermined number of arithmetic
operations. For example, Gauss elimination computes the LU factorization of A
using O(n3) operations. Iterative methods produce a sequence of approximate
solutions that converge to the exact answer as the number of iterations goes to
infinity. They usually are faster than direct methods for very large problems,
particularly when A is sparse.

3With n2 floating point numbers and 8 bytes per number (double precision), we need
50, 0002 × 8 = 2 · 1010 bytes, which is 20GBytes.

3

2 Review of linear algebra

This section recalls some aspects of linear algebra we make use of later. It is not
a substitute for a course on linear algebra. We make use of many things from
linear algebra, such as matrix inverses, without explanation. People come to
scientific computing with vastly differing points of view in linear algebra. This
section should give everyone a common language.

2.1 Vector spaces

Linear algebra gets much of its power through the interaction between the ab-
stract and the concrete. Abstract linear transformations are represented by
concrete arrays of numbers forming a matrix. The set of solutions of a homo-
geneous system of equations forms an abstract subspace of Rn that we can try
to characterize. For example, a basis for such a subspace may be computed by
factoring a matrix in a certain way.

A vector space is a set of elements that may be added and multiplied by
scalar numbers4 (either real or complex numbers, depending on the application).
Vector addition is commutative (u + v = v + u) and associative ((u + v) + w =
u + (v + w)). Multiplication by scalars is distributive over vector addition
(a(u + v) = au + av and (a + b)u = au + bu for scalars a and b and vectors u
and v). There is a unique zero vector, 0, with 0 + u = u for any vector u.

The standard vector spaces are Rn (or Cn), consisting of column vectors

u =




u1

u2

·
·

un




where the components, uk, are arbitrary real (or complex) numbers. Vector
addition and scalar multiplication are done componentwise.

If V is a vector space and V ′ ⊂ V , then we say that V ′ is a subspace of V if
V ′ is also a vector space with the same vector addition and scalar multiplication
operations. We may always add elements of V ′ and multiply them by scalars,
but V ′ is a subspace if the result always is an element of V ′. We say V ′ is
a subspace if it is closed under vector addition and scalar multiplication. For
example, suppose V = Rn and V ′ consists of all vectors whose components sum
to zero (

∑n
k=1 uk = 0). If we add two such vectors or multiply by a scalar, the

result also has the zero sum property. On the other hand, the set of vectors
whose components sum to one (

∑n
k=1 uk = 1) is not closed under vector addition

or scalar multiplication.

4Physicists use the word “scalar” in a different way. For them, a scalar is a number that
is the same in any coordinate system. The components of a vector in a particular basis are
not scalars in this sense.

4

A basis for vector space V is a set of vectors f1, . . ., fn so that any u ∈ V
may be written in a unique way as a linear combination of the vectors fk:

u = u1f1 + · · · + unfn ,

with scalar expansion coefficients uk. The standard vector spaces Rn and Cn

have standard bases ek, the vector with all zero components but for a single 1
in position k. This is a basis because

u =




u1

u2

·
·

un




= u1




1
0
·
·
0




+ u2




0
1
·
·
0




+ · · · + un




0
0
·
·
1




=
n∑

k=1

ukek .

In view of this, there is little distinction between coordinates, components, and
expansion coefficients, all of which are called uk. If V has a basis with n ele-
ments, we say the dimension of V is n. It is possible to make this definition
because of the theorem that states that every basis of V has the same number
of elements. A vector space that does not have a finite basis is called infinite di-
mensional5. The vector space of all polynomials (with no limit on their degree)
is infinite dimensional.

Polynomials provide other examples of vector spaces. A polynomial in the
variable x is a linear combination of powers of x, such as 2 + 3x4, or 1, or
1
3 (x − 1)2(x3 − 3x)6. We could multiply out the last example to write it as a
linear combination of powers of x. The degree of a polynomial is the highest
power that it contains. The complicated product above has degree 20. One
vector space is the set, Pd, of all polynomials of degree not more than d. This
space has a basis consisting of d + 1 elements:

f0 = 1 , f1 = x , . . . , fd = xd .

Another basis of P3 consists of the “Hermite” polynomials

H0 = 1 , H1 = x , H2 = x2 − 1 , H3 = x3 − 3x .

These are useful in probability because if x is a standard normal random vari-
able, then they are uncorrelated:

E [Hj(X)Hk(X)] =
1√
2π

∫ ∞

−∞

Hj(x)Hk(x)e−x2/2dx = 0 if j 6= k.

Still another basis of P3 consists of Lagrange interpolating polynomials for the
points 1, 2, 3, and 4:

l1 =
(x − 2)(x − 3)(x − 4)

(1 − 2)(1 − 3)(1 − 4)
, l2 =

(x − 1)(x − 3)(x − 4)

(2 − 1)(2 − 3)(2 − 4)
,

5An infinite dimensional vector space might have an infinite basis, whatever that might
mean.

5

l3 =
(x − 1)(x − 2)(x − 4)

(3 − 1)(3 − 2)(3 − 4)
, l4 =

(x − 1)(x − 2)(x − 3)

(3 − 1)(3 − 2)(3 − 4)
.

These are useful for interpolation because, for example, l1(1) = 1 while l2(1) =
l3(1) = l4(1) = 0. If we want u(x) to be a polynomial of degree 3 taking specified
values u(1) = u1, u(2) = u2, u(3) = u3, and u(4) = u4, the answer is

u(x) = u1l1(x) + u2l2(x) + u3l3(x) + u4l4(x) .

For example, at x = 2, the l2 term takes the value u2 while the other three
terms are zero. The Lagrange interpolating polynomials are linearly indepen-
dent because if 0 = u(x) = u1l1(x) + u2l2(x) + u3l3(x) + u4l4(x) for all x then
in particular u(x) = 0 at x = 1, 2, 3, and 4, so u1 = u2 = u3 = u4 = 0.

If V ′ ⊂ V is a subspace of dimension m of a vector space of dimension n,
then it is possible to find a basis, fk, of V so that the first m of the fk form a
basis of V ′. For example, if V = P3 and V ′ is the polynomials that vanish at
x = 2 and x = 3, we can take

f1 = (x − 2)(x − 3) , f2 = x(x − 2)(x − 3) , f3 = 1 , f4 = x .

Note the general (though not universal) rule that the dimension of V ′ is equal
to the dimension of V minus the number of constraints or conditions that define
V ′. Whenever V ′ is a proper subspace of V , there is some u ∈ V that is not in
V ′, m < n. One common task in computational linear algebra is finding a well
conditioned basis for a subspace specified in some way.

2.2 Matrices and linear transformations

Suppose V and W are vector spaces. A linear transformation from V to W is a
function that produces an element of W for any element of V , written w = Lv,
that is linear. Linear means that L(v1 + v2) = Lv1 + Lv2 for any two vectors
in V , and Lxv = xLv for any scalar x and vector v ∈ V . By convention we
write Lv instead of L(v) even though L represents a function from V to W .
This makes algebraic manipulation with linear transformations look just like
algebraic manipulation of matrices, deliberately blurring the distinction between
linear transformations and matrix multiplication. The simplest example is the
situation of V = Rn, W = Rm, and Lu = A · u, for some m× n matrix A. The
notation A · u means that we should multiply the vector u by the matrix A.
Most of the time we leave out the dot.

Any linear transformation between finite dimensional vector spaces may be
represented by a matrix. Suppose f1, . . ., fn is a basis for V , and g1, . . ., gm is
a basis for W . For each k, the linear transformation of fk is an element of W
and may be written as a linear combination of the gj :

Lfk =

m∑

j=1

ajkgj .

6

Because the transformation is linear, we can calculate what happens to a vector
u ∈ V in terms of its expansion u =

∑
k ukfk. Let w ∈ W be the image of u,

w = Lu, written as w =
∑

j wjgj. We find

wj =

n∑

k=1

ajkuk ,

which is ordinary matrix-vector multiplication.
The matrix that represents L depends on the basis. For example, suppose

V = P3, W = P2, and L represents differentiation:

L
(
p0 + p1x + p2x

2 + p3x
3
)

=
d

dx

(
p0 + p1x + p2x

2 + p3x
3
)

= p1+2p2x+3p3x
2 .

If we take the basis 1, x, x2, x3 for V , and 1, x, x2 for W , then the matrix is




0 1 0 0
0 0 2 0
0 0 0 3





The matrix would be different if we used the Hermite polynomial basis for V .
(See Exercise 1).

Conversely, an m×n matrix, A, represents a linear transformation from Rn

to Rm (or from Cn to Cm). We denote this transformation also by A. If v ∈ Rm

is an m component column vector, then w = Av, the matrix vector product,
determines w ∈ Rn, a column vector with n components. As before, the notation
deliberately is ambiguous. The matrix A is the matrix that represents the linear
transformation A using standard bases of Rn and Rm.

A matrix also may represent a change of basis within the same space V .
If f1, . . ., fn, and g1, . . ., gn are different bases of V , and u is a vector with
expansions u =

∑
k vkfk and u =

∑
j wjgj , then we may write




v1

·
·

vn


 =




a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann







w1

·
·

wn




As before, the matrix elements ajk are the expansion coefficients of gj with
respect to the fk basis6. For example, suppose u ∈ P3 is given in terms of
Hermite polynomials or simple powers: u =

∑3
j=0 vjHj(x) =

∑3
k=0 wjx

j , then




v0

v1

v2

v3


 =




1 0 −1 0
0 1 0 −3
0 0 1 0
0 0 0 1







w0

w1

w2

w3




6We write ajk for the (j, k) entry of A.

7

We may reverse the change of basis by using the inverse matrix:




w1

·
·

wn


 =




a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann




−1


v1

·
·

vn




Two bases must have the same number of elements because only square matrices
can be invertible.

Composition of linear transformations corresponds to matrix multiplication.
If L is a linear transformation from V to W , and M is a linear transformation
from W to a third vector space, Z, then ML is the composite tranformation
that takes V to7 W . The composite of L and M is defined if the target (or
range) of L, is the same as the source (or domain) of M , W in this case. If A
is an m × n matrix and and B is p × q, then the target of A is W = Rn and
the source of B is Rq. Therefore, the composite AB is defined if n = p. This
is the condition for the matrix product A · B (usually written without the dot)
to be defined. The result is a transformation from V = Rm to Z = Rp, i.e., the
m × p matrix AB.

For vector spaces V and W , the set of linear transformations from V to W
forms a vector space. We can add two linear transformations and multiply a
linear transformation by a scalar. This applies in particular to m× n matrices,
which represent linear transformations from Rn to Rm. The entries of A + B
are ajk + bjk. An n × 1 matrix has a single column and may be thought of as
a column vector. The product Au is the same whether we consider u to be a
column vector or an n × 1 matrix. A 1 × n matrix has a single row and may
be thought of as a row vector. If r is such a row vector, the product rA makes
sense, but Ar does not. It is useful to distinguish between row and column
vectors although both are determined by n components. The product ru is a
1 × 1 matrix ((1 × n) · (n × 1) gives 1 × 1), i.e., a scalar.

If the source and targets are the same, V = W , or n = m = p = q, then
both composites LM and ML both are defined, but they probably are not
equal. Similarly, if A and B are n × n matrices, then AB and BA are defined,
but AB 6= BA in general. If A, B, and C are matrices so that the products
AB and BC both are defined, then the products A · (BC) and (AB) · C also
are defined. The associative property of matrix multiplication is the fact that
these are equal: A(BC) = (AB)C. In actual computations it may be better to
compute AB first then multiply by C than to compute BC first the compute
A(BC). For example suppose u is a 1 × n row vector, and B and C are n × n
matrices. Then uB = v is the product of a row vector and a square matrix, which
takes O(n2) additions and multiplications (flops) to compute, and similarly for
vC = (uB)C. On the other hand, BC is the product of n × n matrices, which
takes O(n3) flops to compute. Thus (uB)C takes an order of magnitude fewer
flops to compute than u(BC).

7First v goes to w = Lv, then w goes to z = Mw. In the end, v has gone to M(Lv).

8

If A is an m×n matrix with real entries ajk, the transpose of A, written A∗,
is the n × m matrix whose (j, k) entry is a∗

jk = akj . If A has complex entries,
then A∗, the adjoint of A, is the n × m matrix wth entries a∗

jk = akj (a is the
complex conjugate of a.). If the entries of A are real, the adjoint and transpose
are the same. The transpose often is written At, but we use the same notation
for adjoint and transpose. The transpose or adjoint of a column vector is a row
vector with the same number of entries, and vice versa. By convention, the
vector spaces Rn and Cn consist of n component column vectors. A real square
(n = m) matrix is symmetric if A = A∗. A complex square matrix is self-adjoint
if A∗ = A. We often use the term “self-adjoint” for either case.

If u and v are n component column vectors (u ∈ Cn, v ∈ Cn), their standard
inner product is

〈u, v〉 = u∗v =
n∑

k=1

ukvk . (2)

The inner product is antilinear in its first argument, which means that

〈xu + yv, w〉 = x〈u, w〉 + y〈v, w〉 ,

for complex numbers x and y. It is linear in the second argument:

〈u, xv + yw〉 = x〈u, w〉y + 〈v, w〉 .

It determines the standard euclidean norm ‖u‖ = 〈u, u〉1/2. The complex con-
jugates are not needed when the entries of u and v are real. The reader should
check that 〈u, v〉 = 〈v, u〉. The adjoint of A is determined by the requirement
that 〈A∗u, v〉 = 〈u, Av〉 for all u and v.

2.3 Vector norms

A norm is a way to describe the size of a vector. It is a single number extracted
from the information describing u, which we write ‖u‖ (read “the norm of u”).
There are several different norms that are useful in scientific computing. We say
‖u‖ is a norm if it has the following properties. First, ‖u‖ ≥ 0, with ‖u‖ = 0
only when u = 0. Second, it should be homogeneous: ‖xu‖ = |x| ‖u‖ for any
scalar, x. Third, it should satisfy the triangle inequality, ‖u + v‖ ≤ ‖u‖ + ‖v‖,
for any two vectors u and v.

There are several simple norms for Rn or Cn that have names. One is the
l1 norm

‖u‖1 = ‖u‖l1 =

n∑

k=1

|uk| .

Another is the l∞ norm, also called the sup norm or the max norm:

‖u‖∞ = ‖u‖l∞ = max
k=1,...,n

|uk| .

9

Another is the l2 norm, also called the Euclidian norm

‖u‖2 = ‖u‖l2 =

(
n∑

k=1

|uk|2
)1/2

= 〈u, u〉1/2 .

The l2 norm is natural for vectors representing positions or velocities in three
dimensional space. If the components of u ∈ Rn represent probabilities, the l1

norm might be more appropriate. In some cases we may have a norm defined
indirectly or with a definition that is hard to turn into a number. For example
in the vector space P3 of polynomials of degree 3, we can define a norm

‖p‖ = max
a≤x≤b

|p(x)| . (3)

There is no simple formula for ‖p‖ in terms of the coefficients of p.
The notion of vector norms is not perfect. For one thing, the choice of norm

seems arbitrary in many cases . For example, what norm should we use for
the two dimensional subspace of P3 consisting of polynomials that vanish when
x = 2 and x = 3? Another criticism is that norms may not make dimensional
sense if the different components of u have different units. This might happen,
for example, if the components of u represent different factors (or variables) in a
linear regression. The first factor, u1, might be age of a person, the second, u2,
income, the third the number of children. In some units, we might get (because
the computer stores only numbers, not units)

u =




45
50000

2


 (4)

In situations like these we can define for example, a dimensionless version of the
l1 norm:

‖u‖ =

n∑

k=1

1

uk
· |uk| ,

where uk is a typical value of a quantity with the units of uk in the problem at
hand.

We can go further and use the basis

fk = ukek (5)

of Rn. In this basis, the components of u are ũk = 1
uk

uk, which are dimension-
less. This is balancing or diagonal scaling. For example, if we take a typical
age to be u1 = 40(years), a typical salary to be u2 = 60, 000(dollars/year),
and a typical number of children to be u3 = 2.3 (US national average), then
the normalized components are comparable well scaled numbers: (f1, f2, f3) =
(1.125, .833, .870). The matrix representing a linear transformation in the fk

basis is likely to be better conditioned than the one using the ek basis.

10

2.4 Norms of matrices and linear transformations

Suppose L is a linear transformation from V to W . If we have norms for the
spaces V and W , we can define a corresponding norm of L, written ‖L‖, as the
largest amount by which it stretches a vector:

‖L‖ = max
u6=0

‖Lu‖
‖u‖ . (6)

The norm definition (6) implies that for all u,

‖Lu‖ ≤ ‖L‖ · ‖u‖ . (7)

Moreover, ‖L‖ is the sharp constant in the inequality (7) in the sense that if
‖Lu‖ ≤ C · ‖u‖ for all u, then C ≥ ‖L‖. Thus, (6) is equivalent to saying that
‖L‖ is the sharp constant in (7).

The different vector norms give rise to different matrix norms. The ma-
trix norms corresponding to certain standard vector norms are written with
corresponding subscripts, such as

‖L‖l2 = max
u6=0

‖Lu‖l2

‖u‖l2
. (8)

For V = W = Rn, it turns out that (for the linear transformation represented
in the standard basis by A)

‖A‖l1 = max
k

∑

j

|ajk| ,

and
‖A‖l∞ = max

j

∑

k

|ajk| .

Thus, the l1 matrix norm is the maximum column sum while the max norm is
the maximum row sum. Other norms are hard to compute explicitly in terms
of the entries of A. People often say that ‖L‖l2 is the largest singular value of
L, but this is not too helpful because (8) is the definition of the largest singular
value of L.

Any norm defined by (6) in terms of vector norms has several properties
derived from corresponding properties of vector norms. One is homogeneity:
‖xL‖ = |x| ‖L‖. Another is that ‖L‖ ≥ 0 for all L, with ‖L‖ = 0 only for L = 0.
The triangle inequality for vector norms implies that if L and M are two linear
transformations from V to W , then ‖L + M‖ ≤ ‖L‖ + ‖M‖. Finally, we have
‖LM‖ ≤ ‖L‖ ‖M‖. This is because the composite transformation stretches no
more than the product of the individual maximum stretches:

‖M(Lu)‖ ≤ ‖M‖ ‖Lu‖ ≤ ‖M‖ ‖L‖ ‖u‖ .

Of course, all these properties hold for matrices of the appropriate sizes.

11

All of these norms have uses in the theoretical parts of scientific comput-
ing, the l1 and l∞ norms because they are easy to compute and the l2 norm
because it is invariant under orthogonal transformations such as the discrete
Fourier transform. The norms are not terribly different from each other. For
example, ‖A‖l1 ≤ n ‖A‖l∞ and ‖A‖l∞ ≤ n ‖A‖l1 . For n ≤ 1000, this factor of
n may not be so important if we are asking, for example, about catastrophic
ill-conditioning.

2.5 Eigenvalues and eigenvectors

Let A be an n×n matrix, or a linear transformation from V to V . We say that
λ is an eigenvalue, and r 6= 0 the corresponding (right) eigenvector if

Ar = λr .

Eigenvalues and eigenvectors are useful in understanding dynamics related to A.
For example, the differential equation du

dt = u̇ = Au has solutions u(t) = eλtr.
Moreover, eigenvalues and their relatives, singular values, are the basis of prin-
cipal component analysis in statistics. In general, eigenvalues and eigenvectors
may be complex even though A is real. This is one reason people work with
complex vectors in Cn, even for applications that seem to call for Rn.

Although their descriptions seem similar, the symmetric eigenvalue problem
(A symmetric for real A or self-adjoint for complex A), is vastly different from
the general, or unsymmetric problem. This contrast is detailed below. Here I
want to emphasize the differences in conditioning. In some sense, the eigenvalues
of a symmetric matrix are always well-conditioned functions of the matrix –
a rare example of uniform good fortune. By contrast, the eigenvalues of an
unsymmetric matrix may be so ill-conditioned, even for n as small as 20, that
they are not computable (in double precision arithmetic) and essentially useless.
Eigenvalues of unsymmetric matrices are too useful to ignore, but we can get
into trouble if we ignore their potential ill-conditioning. Eigenvectors, even
for symmetric matrices, may be ill-conditioned, but the consequences of this
ill-conditioning seem less severe.

We begin with the unsymmetric eigenvalue problem. Nothing we say is
wrong if A happens to be symmetric, but some of the statements might be
misleading. An n × n matrix may have as many as n eigenvalues, denoted λk,
k = 1, . . . , n. If all the eigenvalues are distinct, the corresponding eigenvectors,
denoted rk, with Ark = λkrk must be linearly independent, and therefore form
a basis for Rn. These n linearly independent vectors can be assembled to form
the columns of an n × n eigenvector matrix that we call the right eigenvector
matrix.

R =




...
...

r1 · · · rn

...
...


 . (9)

12

We also consider the diagonal eigenvalue matrix with the eigenvalues on the
diagonal and zeros in all other entries:

Λ =




λ1 0
. . .

0 λn


 .

The eigenvalue – eigenvector relations may be expressed in terms of these ma-
trices as

AR = RΛ . (10)

To see this, check that multiplying R by A is the same as multiplying each of
the columns of R by A. Since these are eigenvectors, we get

A




...
...

r1 · · · rn

...
...


 =




...
...

λ1r1 · · · λnrn

...
...




=




...
...

r1 · · · rn

...
...







λ1 0
. . .

0 λn




= RΛ .

Since the columns of R are linearly independent, R is invertible, we can multiply
(10) from the right and from the left by R−1 to get

R−1ARR−1 = R−1RΛR−1 ,

then cancel the R−1R and RR−1, and define8 L = R−1 to get

LA = ΛL .

This shows that the kth row of L is an eigenvector of A if we put the A on the
right:

lkA = λklk .

Of course, the λk are the same: there is no difference between “right” and
“left” eigenvalues. The matrix equation we used to define L, LR = I, gives
useful relations between left and right eigenvectors. The (j, k) entry of LR is
the product of row j of L with row k of R. When j = k this product should
be a diagonal entry of I, namely one. When j 6= k, the product should be zero.
That is

lkrk = 1
ljrk = 0 if j 6= k.

}
(11)

8Here L refers to a matrix, not a general linear transformation.

13

These are called biorthogonality relations. For example, r1 need not be orthog-
onal to r2, but it is orthogonal to l2. The set of vectors rk is not orthogonal,
but the two sets lj and rk are biorthogonal. The left eigenvectors are sometimes
called adjoint eigenvectors because their transposes form right eigenvectors for
the adjoint of A:

A∗l∗j = λj l
∗
j .

Still supposing n distinct eigenvalues, we may take the right eigenvectors to
be a basis for Rn (or Cn if the entries are not real). As discussed in Section
2.2, we may express the action of A in this basis. Since Arj = λjrj , the matrix
representing the linear transformation A in this basis will be the diagonal matrix
Λ. In the framework of Section 2.2, this is because if we expand a vector v ∈ Rn

in the rk basis, v = v1r1 + · · · + vnrn, then Av = λ1v1r1 + · · · + λnvnrn.
For this reason finding a complete set of eigenvectors and eigenvalues is called
diagonalizing A. A matrix with n linearly independent right eigenvectors is
diagonalizable.

If A does not have n distinct eigenvalues then there may be no basis in which
the action of A is diagonal. For example, consider the matrix

J =

(
0 1
0 0

)
.

Clearly, J 6= 0 but J2 = 0. A diagonal or diagonalizable matrix cannot have
this property: if Λ2 = 0 then Λ = 0, and if the relations A 6= 0, A2 = 0 in one
basis, they hold in any other basis. In general a Jordan block with eigenvalue
λ is a k × k matrix with λ on the diagonal, 1 on the superdiagonal and zeros
elsewhere: 



λ 1 0 · · · 0
0 λ 1 0 0
... 0

. . .
. . .

...
...

...
. . . λ 1

0 0 · · · 0 λ




.

If a matrix has fewer than n distinct eigenvalues, it might or might not be
diagonalizable. If A is not diagonalizable, a theorem of linear algebra states
that there is a basis in which A has Jordan form. A matrix has Jordan form if
it is block diagonal with Jordan blocks of various sizes and eigenvalues on the
diagonal. It can be difficult to compute the Jordan form of a matrix numerically,
as we will see.

The eigenvalue – eigenvector problem for symmetric or self-adjoint matrices
is different and in many ways simpler than the general nonsymmetric eigenvalue
problem. The eigenvalues are real. The left eigenvectors are transposes of the
right eigenvectors: lk = r∗k. There are no Jordan blocks; every symmetric matrix
is diagonalizable even if the number of distinct eigenvalues is less than n. The
biorthogonality relations (11) become the normalization conditions

r∗j rj = 1 , (12)

14

and the orthogonality relations

r∗j rk = 0 (13)

A set of vectors satisfying both (12) and (13) is called orthonormal. A complete
set of eigenvectors of a symmetric matrix forms an orthonormal basis. It is easy
to check that the orthonormality relations are equivalent to the matrix R in
(9) satisfying R∗R = I, or, equivalently, R−1 = R∗. Such a matrix is called
orthogonal. The matrix form of the eigenvalue relation (10) may be written
R∗AR = Λ, or A = RΛR∗, or R∗A = ΛR∗. The latter shows (yet again) that
the rows of R∗, which are r∗k, are left eigenvectors of A.

2.6 Differentiation and perturbation theory

The main technique in the perturbation theory of Section 3 is implicit differ-
entiation. We use the formalism of virtual perturbations from mechanical en-
gineering, which is related to tangent vectors in differential geometry. It may
seem roundabout at first, but it makes actual calculations quick.

Suppose f(x) represents m functions, f1(x), . . . , fm(x) of n variables, x1, . . . , xn.
The Jacobian matrix9, f ′(x), is the m×n matrix of partial derivatives f ′

jk(x) =
∂xk

fj(x). If f is differentiable (and f ′ is Lipschitz continuous), then the first
derivative approximation is (writing x0 for x to clarify some discussion below)

f(x0 + ∆x) − f(x0) = ∆f = f ′(x0)∆x + O
(
‖∆x‖2

)
. (14)

Here ∆f and ∆x are column vectors.
Suppose s is a scalar “parameter” and x(s) is a differentiable curve in Rn with

x(0) = x0. The function f(x) then defines a curve in Rm with f(x(0)) = f(x0).
We define two vectors, called virtual perturbations,

ẋ =
dx(s)

ds
(0) , ḟ =

df(x(s))

ds
(0) .

The multivariate calculus chain rule implies the virtual perturbation formula

ḟ = f ′(x0)ẋ . (15)

This formula is nearly the same as (14). The virtual perturbation strategy is to
calculate the linear relationship (15) between virtual perturbations and use it
to find the approximate relation (14) between actual perturbations. For this, it
is important that any ẋ ∈ Rn can be the virtual perturbation corresponding to
some curve: just take the straight “curve” x(s) = x0 + sẋ.

The Leibnitz rule (product rule) for matrix multiplication makes virtual
perturbations handy in linear algebra. Suppose A(s) and B(s) are differentiable

9See any good book on multivariate calculus.

15

curves of matrices and compatible for matrix multiplication. Then the virtual
perturbation of AB is given by the product rule

d

ds
AB

∣∣∣∣
s=0

= ȦB + AḂ . (16)

To see this, note that the (jk) entry of A(s)B(s) is
∑

l ajl(s)blk(s). Differenti-
ating this using the ordinary product rule then setting s = 0 yields

∑

l

ȧjlblk +
∑

l

ajlḃlk .

These terms correspond to the terms on the right side of (16). We can differen-
tiate products of more than two matrices in this way.

As an example, consider perturbations of the inverse of a matrix, B = A−1.
The variable x in (14) now is the matrix A, and f(A) = A−1. Apply implicit
differentiation to the formula AB = I, use the fact that I is constant, and we
get ȦB + AḂ = 0. Then solve for Ḃ (and use A−1 = B, and get

Ḃ = −A−1ȦA−1 .

The corresponding actual perturbation formula is

∆
(
A−1

)
= −A−1 ∆A A−1 + O

(
‖∆A‖2

)
. (17)

This is a generalization of the fact that the derivative of 1/x is −1/x2, so
∆(1/x) ≈ −1/x2∆x. When x is replaced by A and ∆A does not commute with
A, we have to worry about the order of the factors. The correct order is (17).

For future reference we comment on the case m = 1, which is the case of
one function of n variables. The 1 × n Jacobian matrix may be thought of as
a row vector. We often write this as ▽f , and calculate it from the fact that
ḟ = ▽f(x) · ẋ for all ẋ. In particular, x is a stationary point of f if ▽f(x) = 0,
which is the same as ḟ = 0 for all ẋ. For example, suppose f(x) = x∗Ax for
some n× n matrix A. This is a product of the 1×n matrix x∗ with A with the
n × 1 matrix x. The Leibnitz rule (16) gives, if A is constant,

ḟ = ẋ∗Ax + x∗Aẋ .

Since the 1 × 1 real matrix ẋ∗Ax is equal to its transpose, this is

ḟ = x∗(A + A∗)ẋ .

This implies that (both sides are row vectors)

▽ (x∗Ax) = x∗(A + A∗) . (18)

If A∗ = A, we recognize this as a generalization of n = 1 formula d
dx(ax2) = 2ax.

16

2.7 Variational principles for the symmetric eigenvalue

problem

A variational principle is a way to find something by solving a maximization or
minimization problem. The Rayleigh quotient for an n × n matrix is

Q(x) =
x∗Ax

x∗x
=

〈x, Ax〉
〈x, x〉 . (19)

If x is real, x∗ is the transpose of x, which is a row vector. If x is complex, x∗

is the adjoint. In either case, the denominator is x∗x =
∑n

k=1 |xk|2 = ‖x‖2
l2 .

The Rayleigh quotient is defined for x 6= 0. A vector r is a stationary point if
▽Q(r) = 0. If r is a stationary point, the corresponding value λ = Q(r) is a
stationary value.

Theorem 1 If A is a real symmetric or a complex self-adjoint matrix, each
eigenvector of A is a stationary point of the Rayleigh quotient and the cor-
responding eigenvalue is the corresponding stationary value. Conversely, each
stationary point of the Rayleigh quotient is an eigenvector and the corresponding
stationary value the corresponding eigenvalue.

Proof: We give the proof for real x and real symmetric A. The complex self-
adjoint case is an exercise. Underlying the theorem is the calculation (18) that
if A∗ = A (this is where symmetry matters) then ▽ (x∗Ax) = 2x∗A. With
this we calculate (using the quotient rule and (18) with A = I)

▽Q = 2

(
1

x∗x

)
x∗A − 2

(
x∗Ax

(x∗x)2

)
x∗ .

If x is a stationary point (▽Q = 0), then x∗A =
(

x∗Ax
x∗x

)
x∗, or, taking the

transpose,

Ax =

(
x∗Ax

x∗x

)
x .

This shows that x is an eigenvector with

λ =
x∗Ax

x∗x
= Q(x)

as the corresponding eigenvalue. Conversely if Ar = λr, then Q(r) = λ and the
calculations above show that ▽Q(r) = 0. This proves the theorem.

A simple observation shows that there is at least one stationary point of Q
for Theorem 1 to apply to. If α is a real number, then Q(αx) = Q(x). We may
choose α so that10 ‖αx‖ = 1. This shows that

max
x 6=0

Q(x) = max
‖x‖=1

Q(x) = max
‖x‖=1

x∗Ax .

10In this section and the next, ‖x‖ = ‖x‖l2 .

17

A theorem of analysis states that if Q(x) is a continuous function on a compact
set, then there is an r so that Q(r) = maxx Q(x) (the max is attained). The
set of x with ‖x‖ = 1 (the unit sphere) is compact and Q is continuous. Clearly
if Q(r) = maxx Q(x), then ▽Q(r) = 0, so r is a stationary point of Q and an
eigenvector of A.

The key to finding the other n − 1 eigenvectors is a simple orthogonality
relation. The principle also is the basis of the singular value decomposition. If
r is an eigenvector of A and x is orthogonal to r, then x also is orthogonal to
Ar. Since Ar = λr, and x is orthogonal to r if x∗r = 0, this implies x∗Ar =
x∗λr = 0. More generally, suppose we have m < n and eigenvectors r1, . . . , rm.
eigenvectors r1, . . . , rm with m < n. Let Vm ⊆ Rn be the set of x ∈ Rn with
x∗rj = 0 for j = 1, . . . , m. It is easy to check that this is a subspace of Rn. The
orthogonality principle is that if x ∈ Vm then Ax ∈ Vm. That is, if x∗rj = 0 for
all j, then (Ax)∗rj = 0 for all j. But (Ax)∗rj = x∗A∗rj = x∗Arj = x∗λjrj = 0
as before.

The variational and orthogonality principles allow us to find n−1 additional
orthonormal eigenvectors as follows. Start with r1, a vector that maximizes Q.
Let V1 be the vector space of all x ∈ Rn with r∗1x = 0. We just saw that V1 is
an invariant subspace for A, which means that Ax ∈ V1 whenever x ∈ V1. Thus
A defines a linear transformation from V1 to V1, which we call A1. Chapter ??

gives a proof that A1 is symmetric in a suitable basis. Therefore, Theorem 1
implies that A1 has at least one real eigenvector, r2, with real eigenvalue λ2.
Since r2 ∈ V1, the action of A and A1 on r2 is the same, which means that
Ar2 = λ2r2. Also since r2 ∈ V1, r2 is orthogonal to r1. Now let V2 ⊂ V1 be the
set of x ∈ V1 with x∗r2 = 0. Since x ∈ V2 means x∗r1 = 0 and x∗r2 = 0, V2 is an
invariant subspace. Thus, there is an r3 ∈ V2 with Ar3 = A1r3 = A2r3 = λ3r3.
And again r3 is orthogonal to r2 because r3 ∈ V2 and r3 is orthogonal to r1

because r3 ∈ V2 ⊂ V1. Continuing in this way, we eventually find a full set of n
orthogonal eigenvectors.

2.8 Least squares

Suppose A is an m× n matrix representing a linear transformation from Rn to
Rm, and we have a vector b ∈ Rm. If n < m the linear equation system Ax = b
is overdetermined in the sense that there are more equations than variables to
satisfy them. If there is no x with Ax = b, we may seek an x that minimizes
the residual

r = Ax − b . (20)

This linear least squares problem

min
x

‖Ax − b‖l2 , (21)

is the same as finding x to minimize the sum of squares

SS =

n∑

j=1

r2
j .

18

Linear least squares problems arise through linear regression in statistics.
A linear regression model models the response, b, as a linear combination of
m explanatory vectors, ak, each weighted by a regression coefficient, xk. The
residual, R = (

∑m
k=1 akxk) − b, is modeled as a Gaussian random variable11

with mean zero and variance σ2. We do n experiments. The explanatory vari-
ables and response for experiment j are ajk, for k = 1. . . . , m, and bj , and the
residual (for given regression coefficients) is rj =

∑m
k=1 ajkxk − bj. The log like-

lihood function is (r depends on x through (20) f(x) = −σ2
∑n

j=1 r2
j . Finding

regression coefficients to maximize the log likelihood function leads to (21).
The normal equations give one approach to least squares problems. We

calculate:

‖r‖2
l2 = r∗r

= (Ax − b)
∗
(Ax − b)

= x∗A∗Ax − 2x∗A∗b + b∗b .

Setting the gradient to zero as in the proof of Theorem 1 leads to the normal
equations

A∗Ax = A∗b , (22)

which can be solved by
x = (A∗A)

−1
A∗b . (23)

The matrix M = A∗A is the moment matrix or the Gram matrix. It is sym-
metric, and positive definite if A has rank m, so the Choleski decomposition
of M (see Chapter ??) is a good way to solve (22). The matrix (A∗A)

−1
A∗

is the pseudoinverse of A. If A were square and invertible, it would be A−1

(check this). The normal equation approach is the fastest way to solve dense
linear least squares problems, but it is not suitable for the subtle ill-conditioned
problems that arise often in practice.

The singular value decomposition in Section 2.9 and the QR decomposition
from Section ?? give better ways to solve ill-conditioned linear least squares
problems.

2.9 Singular values and principal components

Eigenvalues and eigenvectors of a symmetric matrix have at many applications.
They can be used to solve dynamical problems involving A. Because the eigen-
vectors are orthogonal, they also determine the l2 norm and condition number of
A. Eigenvalues and eigenvectors of a non-symmetric matrix are not orthogonal
so the eigenvalues do not determine the norm or condition number. Singular
values for non-symmetric or even non-square matrices are a partial substitute.

Let A be an m × n matrix that represents a linear transformation from Rn

to Rm. The right singular vectors, vk ∈ Rn form an orthonormal basis for

11See any good book on statistics for definitions of Gaussian random variable and the log
likelihood function. What is important here is that a systematic statistical procedure, the
maximum likelihood method, tells us to minimize the sum of squares of residuals.

19

Rn. The left singular vectors, uk ∈ Rm, form an orthonormal basis for Rm.
Corresponding to each vk and uk pair is a non-negative singular value, σk with

Avk = σkuk . (24)

By convention these are ordered so that σ1 ≥ σ2 ≥ · · · ≥ 0. If n < m we
interpret (24) as saying that σk = 0 for k > n. If n > m we say σk = 0 for
k > m.

The non-zero singular values and corresponding singular vectors may be
found one by one using variational and orthogonality principles similar to those
in Section 2.7. We suppose A is not the zero matrix (not all entries equal to
zero). The first step is the variational principle:

σ1 = max
x 6=0

‖Ax‖
‖x‖ . (25)

As in Section 2.7, the maximum is achieved, and σ1 > 0. Let v1 ∈ Rn be a
maximizer, normalized to have ‖v1‖ = 1. Because ‖Av1‖ = σ1, we may write
Av1 = σ1u1 with ‖u1‖ = 1. This is the relation (24) with k = 1.

The optimality condition calculated as in the proof of Theorem 1 implies
that

u∗
1A = σ1v

∗
1 . (26)

Indeed, since σ1 > 0, (25) is equivalent to12

σ2
1 = max

x 6=0

‖Ax‖2

‖x‖2

= max
x 6=0

(Ax)∗(Ax)

x∗x

σ2
1 = max

x 6=0

x∗(A∗A)x

x∗x
. (27)

Theorem 1 implies that the solution to the maximization problem (27), which is
v1, satisfies σ2v1 = A∗Av1. Since Av1 = σu1, this implies σ1v1 = A∗u1, which
is the same as (26).

The analogue of the eigenvalue orthogonality principle is that if x∗v1 = 0,
then (Ax)∗ u1 = 0. This is true because

(Ax)
∗
u1 = x∗ (A∗u1) = x∗σ1v1 = 0 .

Therefore, if we define V1 ⊂ Rn by x ∈ V1 if x∗v1 = 0, and U1 ⊂ Rm by y ∈ U1

if y∗u1 = 0, then A also defines a linear transformation (called A1) from V1 to
U1. If A1 is not identically zero, we can define

σ2 = max
x∈V1

x 6=0

‖Ax‖2

‖x‖2 = max
x∗v1=0

x 6=0

‖Ax‖2

‖x‖2 ,

12These calculations make constant use of the associativity of matrix multiplication, even
when one of the matrices is a row or column vector.

20

and get Av2 = σ2u2 with v∗2v1 = 0 and u∗
2u1 = 0. This is the second step

constructing orthonormal bases satisfying (24). Continuing in this way, we can
continue finding orthonormal vectors vk and uk that satisfy (24) until reach
Ak = 0 or k = m or k = n. After that point, the may complete the v and u
bases arbitrarily as in Chapter ?? with remaining singular values being zero.

The singular value decomposition (SVD) is a matrix expression of the rela-
tions (24). Let U be the m × m matrix whose columns are the left singular
vectors uk (as in (9)). The orthonormality relations u∗

juk = δjk are equivalent
to U being an orthogonal matrix: U∗U = I. Similarly, we can form the orthog-
onal n× n matrix, V , whose columns are the right singular vectors vk. Finally,
the m × n matrix, Σ, has the singular values on its diagonal (with somewhat
unfortunate notation), σjj = σj , and zeros off the diagonal, σjk = 0 if j 6= k.
With these definitions, the relations (24) are equivalent to AV = UΣ, which
more often is written

A = UΣV ∗ . (28)

This the singular value decomposition. Any matrix may be factored, or de-
composed, into the product of the form (28) where U is an m × m orthogonal
matrix, Σ is an m × n diagonal matrix with nonnegative entries, and V is an
n × n orthogonal matrix.

A calculation shows that A∗A = V Σ∗ΣV ∗ = V ΛV ∗. This implies that the
eigenvalues of A∗A are given by λj = σ2

j and the right singular vectors of A

are the eigenvectors of A∗A. It also implies that κl2(A
∗A) = κl2(A)2. This

means that the condition number of solving the normal equations (22) is the
square of the condition number of the original least squares problem (21). If
the condition number of a least squares problem is κl2(A) = 105, even the best
solution algorithm can amplify errors by a factor of 105. Solving using the
normal equations can amplify rounding errors by a factor of 1010.

Many people call singular vectors uk and vk principal components. They
refer to the singular value decomposition as principal component analysis, or
PCA. One application is clustering, in which you have n objects, each with m
measurements, and you want to separate them into two clusters, say “girls”
and “boys”. You assemble the data into a matrix, A, and compute, say, the
largest two singular values and corresponding left singular vectors, u1 ∈ Rm

and u2 ∈ Rm. The data for object k is ak ∈ Rm, and you compute zk ∈ R2 by
zk1 = u∗

1ak and zk2 = u∗
2ak, the components of ak in the principal component

directions. You then plot the n points zk in the plane and look for clusters, or
maybe just a line that separates one group of points from another. Surprising
as may seem, this simple procedure does identify clusters in practical problems.

3 Condition number

Ill-conditioning can be a serious problem in numerical solution of problems in
linear algebra. We take into account possible ill-conditioning when we choose
computational strategies. For example, the matrix exponential exp(A) (see
exercise 12) can be computed using the eigenvectors and eigenvalues of A. We

21

will see in Section 3.3 that the eigenvalue problem may be ill conditioned even
when the problem of computing exp(A) is fine. In such cases we need a way to
compute exp(A) that does not use the eigenvectors and eigenvalues of A.

As we said in Section ?? (in slightly different notation), the condition number
is the ratio of the change in the answer to the change in the problem data, with
(i) both changed measured in relative terms, and (ii) the change in the problem
data being small. Norms allow us to make this definition more precise in the
case of multivariate functions and data. Let f(x) represent m functions of
n variables, with ∆x being a change in x and ∆f = f(x + ∆x) − f(x) the
corresponding change in f . The size of ∆x, relative to x is ‖∆x‖ / ‖x‖, and
similarly for ∆f . In the multivariate case, the size of ∆f depends not only on
the size of ∆x, but also on the direction. The norm based condition number
seeks the worst case ∆x, which leads to

κ(x) = lim
ǫ→0

max
‖∆x‖=ǫ

‖f(x+∆x)−f(x)‖
‖f(x)‖

‖∆x‖
‖x‖

. (29)

Except for the maximization over directions ∆x with ‖∆x‖ = ǫ, this is the same
as the earlier definition ??.

Still following Section ??, we express (29) in terms of derivatives of f . We let
f ′(x) represent the m× n Jacobian matrix of first partial derivatives of f , as in

Section 2.6, so that, ∆f = f ′(x)∆x + O
(
‖∆x‖2

)
. Since O

(
‖∆x‖2

)
/ ‖∆x‖ =

O (‖∆x‖), the ratio in (29) may be written

‖∆f‖
‖∆x‖ · ‖x‖‖f‖ =

‖f ′(x)∆x‖
‖∆x‖ · ‖x‖‖f‖ + O (‖∆x‖) .

The second term on the right disappears as ∆x → 0. Maximizing the first term
on the right over ∆x yields the norm of the matrix f ′(x). Altogether, we have

κ(x) = ‖f ′(x)‖ · ‖x‖
‖f(x)‖ . (30)

This differs from the earlier condition number definition (??) in that it uses
norms and maximizes over ∆x with ‖∆x‖ = ǫ.

In specific calculations we often use a slightly more complicated way of stat-
ing the definition (29). Suppose that P and Q are two positive quantities and
there is a C so that P ≤ C · Q. We say that C is the sharp constant if there
is no C′ with C′ < C so that P ≤ C′ · Q. For example, we have the inequality
sin(2ǫ) ≤ 3 · ǫ for all x. But C = 3 is not the sharp constant because the in-
equality also is true with C′ = 2, which is sharp. But this definition is clumsy,
for example, if we ask for the sharp constant in the inequality tan(ǫ) ≤ C · ǫ.
For one thing, we must restrict to ǫ → 0. The sharp constant should be C = 1
because if C′ > 1, there is an ǫ0 so that if ǫ ≤ ǫ0, then tan(ǫ) ≤ C′ · ǫ. But the
inequality is not true with C = 1 for any ǫ. Therefore we write

P (ǫ)
≤
∼CQ(ǫ) as ǫ → 0 (31)

22

if

lim
ǫ→0

P (ǫ)

Q(ǫ)
≤ C .

In particular, we can seek the sharp constant, the smallest C so that

P (ǫ) ≤ C · Q(ǫ) + O(ǫ) as ǫ → 0.

The definition (??) is precisely that κ(x) is the sharp constant in the inequality

‖∆f‖
‖f‖

≤
∼

‖∆x‖
‖x‖ as ‖x‖ → 0. (32)

3.1 Linear systems, direct estimates

We start with the condition number of calculating b = Au in terms of u with A
fixed. This fits into the general framework above, with u playing the role of x,
and Au of f(x). Of course, A is the Jacobian of the function u → Au, so (30)
gives

κ(A, u) = ‖A‖ · ‖u‖
‖Au‖ . (33)

The condition number of solving a linear system Au = b (finding u as a function
of b) is the same as the condition number of the computation u = A−1b. The
formula (33) gives this as

κ(A−1, b) =
∥∥A−1

∥∥ · ‖b‖
‖A−1b‖ = ‖A−1‖ · ‖Au‖

‖u‖ .

For future reference, not that this is not the same as (33).
The traditional definition of the condition number of the Au computation

takes the worst case relative error not only over perturbations ∆u but also over
vectors u. Taking the maximum over ∆u led to (33), so we need only maximize
it over u:

κ(A) = ‖A‖ · max
u6=0

‖u‖
‖Au‖ . (34)

Since A(u + ∆u)−Au = A∆u, and u and ∆u are independent variables, this is
the same as

κ(A) = max
u6=0

‖u‖
‖Au‖ · max

∆u6=0

‖A∆u‖
‖∆u‖ . (35)

To evaluate the maximum, we suppose A−1 exists.13 Substituting Au = v,
u = A−1v, gives

max
u6=0

‖u‖
‖Au‖ = max

v 6=0

∥∥A−1v
∥∥

‖v‖ =
∥∥A−1

∥∥ .

13See exercise 8 for a the l2 condition number of the u → Au problem with singular or
non-square A.

23

Thus, (34) leads to
κ(A) = ‖A‖

∥∥A−1
∥∥ (36)

as the worst case condition number of the forward problem.
The computation b = Au with

A =

(
1000 0

0 10

)

illustrates this discussion. The error amplification relates ‖∆b‖ / ‖b‖ to ‖∆u‖ / ‖u‖.
The worst case would make ‖b‖ small relative to ‖u‖ and ‖∆b‖ large relative
to ‖∆u‖: amplify u the least and ∆u the most. This is achieved by taking

u =

(
0
1

)
so that Au =

(
0

10

)
with amplification factor 10, and ∆u =

(
ǫ
0

)

with A∆u =

(
1000ǫ

0

)
and amplification factor 1000. This makes ‖∆b‖ / ‖b‖

100 times larger than ‖∆u‖ / ‖u‖. For the condition number of calculating

u = A−1b, the worst case is b =

(
0
1

)
and ∆b =

(
ǫ
0

)
, which amplifies the error

by the same factor of κ(A) = 100.
The informal condition number (34) has advantages and disadvantages over

the more formal one (33). At the time we design a computational strategy,
it may be easier to estimate the informal condition number than the formal
one, as we may know more about A than u. If we have no idea what u will
come up, we have a reasonable chance of getting something like the worst one.
Moreover, κ(A) defined by (34) determines the convergence rate of iterative
strategies for solving linear systems involving A. On the other hand, there
are cases, particularly when solving partial differential equations, where κ(A) is
much more pessimistic than κ(A, u). For example, in Exercise 11, κ(A) is on the
order of n2, where n is the number of unknowns. The truncation error for the
second order discretization is on the order of 1/n2. A naive estimate using (34)
might suggest that solving the system amplifies the O(n−2) truncation error
by a factor of n2 to be on the same order as the solution itself. This does not
happen because the u we seek is smooth, and not like the worst case.

The informal condition number (36) also has the strange feature than κ(A) =

κ(A−1), since
(
A−1

)−1
= A. For one thing, this is not true, even using informal

definitions, for nonlinear problems. Moreover, it is untrue in important linear
problems, such as the heat equation.14 Computing the solution at time t > 0
from “initial data” at time zero is a linear process that is well conditioned and
numerically stable. Computing the solution at time zero from the solution at
time t > 0 is so ill conditioned as to be essentially impossible. Again, the more
precise definition (33) does not have this drawback.

14See, for example, the book by Fritz John on partial differential equations.

24

3.2 Linear systems, perturbation theory

If Au = b, we can study the dependence of u on A through perturbation theory.
The starting point is the perturbation formula (17). Taking norms gives

‖∆u‖ <≈
∥∥A−1

∥∥ ‖∆A‖ ‖u‖ , (for small ∆A), (37)

so
‖∆u‖
‖u‖

<≈
∥∥A−1

∥∥ ‖A‖ · ‖∆A‖
‖A‖ (38)

This shows that the condition number satisfies κ ≤
∥∥A−1

∥∥ ‖A‖. The condition

number is equal to
∥∥A−1

∥∥ ‖A‖ if the inequality (37) is (approximately for small
∆A) sharp, which it is because we can take ∆A = ǫI and u to be a maximum
stretch vector for A−1.

We summarize with a few remarks. First, the condition number formula
(36) applies to the problem of solving the linear system Au = b both when we
consider perturbations in b and in A, though the derivations here are different.
However, this is not the condition number in the strict sense of (29) and (30)
because the formula (36) assumes taking the worst case over a family of problems
(varying b in this case), not just over all possible small perturbations in the data.
Second, the formula (36) is independent of the size of A. Replacing A with cA
leaves κ(A) unchanged. What matters is the ratio of the maximum to minimum
stretch, as in (35).

3.3 Eigenvalues and eigenvectors

The eigenvalue relationship is Arj = λjrj . Perturbation theory allows to esti-
mate the changes in λj and rj that result from a small ∆A. These perturbation
results are used throughout science and engineering. We begin with the sym-
metric or self-adjoint case, it often is called Rayleigh Schödinger perturbation
theory15 Using the virtual perturbation method of Section 2.6, differentiating
the eigenvalue relation using the product rule yields

Ȧrj + Aṙj = λ̇jrj + λj ṙj . (39)

Multiply this from the left by r∗j and use the fact that r∗j is a left eigenvector16

gives
r∗j Ȧjrj = λ̇lr

∗
j rj .

If rj is normalized so that r∗j rj = ‖rj‖2
l2 = 1, then the right side is just λ̇j .

Trading virtual perturbations for actual small perturbations turns this into the
famous formula

∆λj = r∗j ∆A rj + O
(
‖∆A‖2

)
. (40)

15Lord Rayleigh used it to study vibrational frequencies of plates and shells. Later Erwin
Schrödinger used it to compute energies (which are eigenvalues) in quantum mechanics.

16Arj = λjrj ⇒ (Arj)
∗ = (λjrj)

∗ ⇒ r∗
j
A = λjr∗

j
since A∗ = A and λj is real.

25

We get a condition number estimate by recasting this in terms of rela-
tive errors on both sides. The important observation is that ‖rj‖l2 = 1, so
‖∆A · rj‖l2 ≤ ‖∆A‖l2 and finally

∣∣r∗j ∆A rj

∣∣ ≤≈ ‖∆A‖l2 .

This inequality is sharp because we can take ∆A = ǫrjr
∗
j , which is an n × n

matrix with (see exercise 7)
∥∥ǫrjr

∗
j

∥∥
l2

= |ǫ|. Putting this into (40) gives the also
sharp inequality, ∣∣∣∣

∆λj

λj

∣∣∣∣ ≤
‖A‖l2

|λj |
‖∆A‖l2

‖A‖l2
.

We can put this directly into the abstract condition number definition (29) to
get the conditioning of λj :

κj(A) =
‖A‖l2

|λj |
=

|λ|
max

|λj |
(41)

Here, κj(A) denotes the condition number of the problem of computing λj ,
which is a function of the matrix A, and ‖A‖l2 = |λ|

max
refers to the eigenvalue

of largest absolute value.
The condition number formula (41) predicts the sizes of errors we get in

practice. Presumably λj depends in some way on all the entries of A and the
perturbations due to roundoff will be on the order of the entries themselves,
multiplied by the machine precision, ǫmach, which are on the order of ‖A‖. Only
if λj is very close to zero, by comparison with |λmax|, will it be hard to compute
with high relative accuracy. All of the other eigenvalue and eigenvector problems
have much worse condition number difficulties.

The eigenvalue problem for non-symmetric matrices can by much more sen-
sitive. To derive the analogue of (40) for non-symmetric matrices we start with
(39) and multiply from the left with the corresponding left eigenvector, lj . After
simplifying, the result is

λ̇j = ljȦrj , ∆λj = lj∆Arj + O
(
‖∆A‖2

)
. (42)

In the non-symmetric case, the eigenvectors need not be orthogonal and the
eigenvector matrix R need not be well conditioned. For this reason, it is possible
that lk, which is a row of R−1 is very large. Working from (42) as we did for
the symmetric case leads to

∣∣∣∣
∆λj

λj

∣∣∣∣ ≤ κLS(R)
‖A‖
|λj |

‖∆A‖
‖A‖ .

Here κLS(R) =
∥∥R−1

∥∥ ‖R‖ is the linear systems condition number of the right
eigenvector matrix. Therefore, the condition number of the non-symmetric
eigenvalue problem is (again because the inequalities are sharp)

κj(A) = κLS(R)
‖A‖
|λj |

. (43)

26

Since A is not symmetric, we cannot replace ‖A‖ by |λ|
max

as we did for (41). In
the symmetric case, the only reason for ill-conditioning is that we are looking for
a (relatively) tiny number. For non-symmetric matrices, it is also possible that
the eigenvector matrix is ill-conditioned. It is possible to show that if a family
of matrices approaches a matrix with a Jordan block, the condition number of
R approaches infinity. For a symmetric or self-adjoint matrix, R is orthogonal
or unitary, so that ‖R‖l2 = ‖R∗‖l2 = 1 and κLS(R) = 1.

The eigenvector perturbation theory uses the same ideas, with the extra
trick of expanding the derivatives of the eigenvectors in terms of the eigenvectors
themselves. We expand the virtual perturbation ṙj in terms of the eigenvectors
rk. Call the expansion coefficients mjk, and we have

ṙj =

n∑

l=1

mjlrl .

For the symmetric eigenvalue problem, if all the eigenvalues are distinct, the
formula follows from multiplying (39) from the left by r∗k:

mjk =
r∗kȦrj

λj − λk
,

so that

∆rj =
∑

k 6=j

r∗k∆Arj

λj − λk
+ O

(
‖∆A‖2

)
.

(The term j = k is omitted because mjj = 0: differentiating r∗j rj = 1 gives
r∗j ṙj = 0.) This shows that the eigenvectors have condition number “issues”
even when the eigenvalues are well-conditioned, if the eigenvalues are close to
each other. Since the eigenvectors are not uniquely determined when eigenvalues
are equal, this seems plausible. The unsymmetric matrix perturbation formula
is

mkj =
ljȦrk

λj − λk
.

Again, we have the potential problem of an ill-conditioned eigenvector basis,
combined with the possibility of close eigenvalues. The conclusion is that the
eigenvector conditioning can be problematic, even though the eigenvalues are
fine, for closely spaced eigenvalues.

4 Software

4.1 Software for numerical linear algebra

There have been major government-funded efforts to produce high quality soft-
ware for numerical linear algebra. This culminated in the public domain software
package LAPack. LAPack is a combination and extension of earlier packages
Eispack, for solving eigenvalue problems, and Linpack, for solving systems of

27

equations. Many of the high quality components of Eispack and Linpack also
were incorporated into Matlab, which accounts for the high quality of Matlab
linear algebra routines.

Our software advice is to use LAPack or Matlab software for computational
linear algebra whenever possible. It is worth the effort in coax the LAPack make

files to work in a particular computing environment. You may avoid wasting
time coding algorithms that have been coded thousands of times before, or
you may avoid suffering from the subtle bugs of the codes you got from next
door that came from who knows where. The professional software often does it
better, for example using balancing algorithms to improve condition numbers.
The professional software also has clever condition number estimates that often
are more sophisticated than the basic algorithms themselves.

4.2 Test condition numbers

Part of the error flag in linear algebra computation is the condition number.
Accurate computation of the condition number may be more expensive than
the problem at hand. For example, computing ‖A‖

∥∥A−1
∥∥ is more several times

more expensive than solving Ax = b. However, there are cheap heuristics that
generally are reliable, at least for identifying severe ill-conditioning. If the con-
dition number is so large that all relative accuracy in the data is lost, the routine
should return an error flag. Using such condition number estimates makes the
code slightly slower, but it makes the computed results much more trustworthy.

5 Resources and further reading

If you need to review linear algebra, the Schaum’s Outline review book on Lin-
ear Algebra may be useful. For a practical introduction to linear algebra written
by a numerical analyst, try the book by Gilbert Strang. More theoretical treat-
ments may be found in the book by Peter Lax or the one by Paul Halmos.
An excellent discussion of condition number is given in the SIAM lecture notes
of Lloyd N. Trefethen. Beresford Parlett has a nice but somewhat out-of-date
book on the theory and computational methods for the symmetric eigenvalue
problem. The Linear Algebra book by Peter Lax also has a beautiful discussion
of eigenvalue perturbation theory and some of its applications. More applica-
tions may be found in the book Theory of Sound by Lord Rayleigh (reprinted
by Dover Press) and in any book on quantum mechanics. I do not know an ele-
mentary book that covers perturbation theory for the non-symmetric eigenvalue
problem in a simple way.

The software repository Netlib, http://netlib.org, is a source for LAPack.
Other sources of linear algebra software, including Mathematica and Numeri-
cal Recipes, are not recommended. Netlib also has some of the best available
software for solving sparse linear algebra problems.

28

6 Exercises

1. Let L be the differentiation operator that takes P3 to P2 described in
Section 2.2. Let fk = Hk(x) for k = 0, 1, 2, 3 be the Hermite polynomial
basis of P3 and gk = Hk(x) for k = 0, 1, 2 be the Hermite basis of P2.
What is the matrix, A, that represents this L in these bases?

2. Suppose L is a linear transformation from V to V and that f1, . . ., fn,
and g1, . . ., gn are two bases of V . Any u ∈ V may be written in a unique
way as u =

∑n
k=1 vkfk, or as u =

∑n
k=1 wkgk. There is an n × n matrix,

R that relates the fk expansion coefficients vk to the gk coefficients wk by
vj =

∑n
k=1 rjkwk. If v and w are the column vectors with components vk

and wk respectively, then v = Rw. Let A represent L in the fk basis and
B represent L in the gk basis.

(a) Show that B = R−1AR.

(b) For V = P3, and fk = xk, and gk = Hk, find R.

(c) Let L be the linear transformation Lp = q with q(x) = ∂x(xp(x)).
Find the matrix, A, that represents L in the monomial basis fk.

(d) Find the matrix, B, that represents L in the Hermite polynomial
basis Hk.

(e) Multiply the matrices to check explicitly that B = R−1AR in this
case.

3. If A is an n × m matrix and B is an m × l matrix, then AB is an n × l
matrix. Show that (AB)∗ = B∗A∗. Note that the incorrect suggestion
A∗B∗ in general is not compatible for matrix multiplication.

4. Let V = Rn and M be an n × n real matrix. This exercise shows that
‖u‖ = (u∗Mu)

1/2
is a vector norm whenever M is positive definite (defined

below).

(a) Show that u∗Mu = u∗M∗u = u∗
(

1
2 (M + M∗)

)
u for all u ∈ V . This

means that as long as we consider functions of the form f(u) = u∗Mu,
we may assume M is symmetric. For the rest of this question, assume
M is symmetric. Hint: u∗Mu is a 1 × 1 matrix and therefore equal
to its transpose.

(b) Show that the function ‖u‖ = (u∗Mu)
1/2

is homogeneous: ‖xu‖ =
|x| ‖u‖.

(c) We say M is positive definite if u∗Mu > 0 whenever u 6= 0. Show
that if M is positive definite, then ‖u‖ ≥ 0 for all u and ‖u‖ = 0 only
for u = 0.

(d) Show that if M is symmetric and positive definite (SPD), then |u∗Mv| ≤
‖u‖ ‖v‖. This is the Cauchy Schwartz inequality. Hint (a famous old
trick): φ(t) = (u + tv)∗M(u + tv) is a quadratic function of t that is

29

non-negative for all t if M is positive definite. The Cauchy Schwartz
inequality follows from requiring that the minimum value of φ is not
negative, assuming M∗ = M .

(e) Use the Cauchy Schwartz inequality to verify the triangle inequality

in its squared form ‖u + v‖2 ≤ ‖u‖2 + 2 ‖u‖ ‖u‖ + ‖v‖2.

(f) Show that if M = I then ‖u‖ is the l2 norm of u.

5. Verify that ‖p‖ defined by (3) on V = P3 is a norm as long as a < b.

6. Suppose A is the n×n matrix that represents a linear transformation from
Rn to Rn in the standard basis ek. Let B be the matrix of the same linear
transformation in the scaled basis (5).

(a) Find a formula for the entries bjk in terms of the ajk and uk.

(b) Find a matrix formula for B in terms of A and the diagonal scaling
matrix W = diag(uk) (defined by wkk = uk, wjk = 0 if j 6= k) and
W−1.

7. Show that if u ∈ Rm and v ∈ Rn and A = uv∗, then ‖A‖l2 = ‖u‖l2 · ‖v‖l2 .
Hint: Note that Aw = mu where m is a scalar, so ‖Aw‖l2 = |m| · ‖u‖l2 .
Also, be aware of the Cauchy Schwarz inequality: |v∗w| ≤ ‖v‖l2 ‖w‖l2 .

8. Suppose that A is an n × n invertible matrix. Show that

∥∥A−1
∥∥ = max

u6=0

‖u‖
‖Au‖ =

(
min
u6=0

‖Au‖
‖u‖

)−1

.

9. The symmetric part of the real n × n matrix is M = 1
2 (A + A∗). Show

that ▽
(

1
2x∗Ax

)
= Mx.

10. The informal condition number of the problem of computing the action of
A is

κ(A) = max
x 6=0, ∆x 6=0

‖A(x+∆x)−Ax‖
‖Ax‖

‖x+∆x‖
‖x‖

.

Alternatively, it is the sharp constant in the estimate

‖A(x + ∆x) − Ax‖
‖Ax‖ ≤ C · ‖x + ∆x‖

‖x‖ ,

which bounds the worst case relative change in the answer in terms of the
relative change in the data. Show that for the l2 norm,

κ = σmax/σmin ,

the ratio of the largest to smallest singular value of A. Show that this
formula holds even when A is not square.

30

11. We wish to solve the boundary value problem for the differential equation

1

2
∂2

xu = f(x) for 0 < x < 1, (44)

with boundary conditions

u(0) = u(1) = 0 . (45)

We discretize the interval [0, 1] using a uniform grid of points xj = j∆x
with n∆x = 1. The n− 1 unknowns, Uj , are approximations to u(xj), for
j = 1, . . . , n − 1. If we use a second order approximation to 1

2∂2
xu, we get

discrete equations

1

2

1

∆x2
(Uj+1 − 2Uj + Uj−1) = f(xj) = Fj . (46)

Together with boundary conditions U0 = Un = 0, this is a system of
n − 1 linear equations for the vector U = (U1, . . . , Un−1)

∗ that we write
as AU = F .

(a) Check that there are n−1 distinct eigenvectors of A having the form
rkj = sin(kπxj). Here rkj is the j component of eigenvector rk.
Note that rk,j+1 = sin(kπxj+1) = sin(kπ(xj + ∆x)), which can be
evaluated in terms of rkj using trigonometric identities.

(b) Use the eigenvalue information from part (a) to show that
∥∥A−1

∥∥→
2/π2 as n → ∞ and κ(A) = O(n2) (in the informal sense) as n → ∞.
All norms are l2.

(c) Suppose Ũj = u(xj) where u(x) is the exact but unknown solution
of (44), (45). Show that if u(x) is smooth then the residual17, R =

AŨ − F , satisfies ‖R‖ = O(∆x2) = O(1/n2). For this to be true
we have to adjust the definition of ‖U‖ to be consistent with the

L2 integral ‖u‖2
L2 =

∫ 1

x=0 u2(x)dx. The discrete approximation is

‖U‖2
l2 = ∆x

∑n
k=1 U2

j .

(d) Show that A
(
U − Ũ

)
= R. Use part (b) to show that

∥∥∥U − Ũ
∥∥∥ =

O(∆x2) (with the ∆x modified ‖·‖).
(e) (harder) Create a fourth order five point central difference approxi-

mation to ∂2
xu. You can do this using Richardson extrapolation from

the second order three point formula. Use this to find an A so that
solving AU = F leads to a fourth order accurate U . The hard part is
what to do at j = 1 and j = n − 1. At j = 1 the five point approxi-
mation to ∂2

xu involves U0 and U−1. It is fine to take U0 = u(0) = 0.
Is it OK to take U−1 = −U1?

17Residual refers to the extent to which equations are not satisfied. Here, the equation is

AU = F , which Ũ does not satisfy, so R = AŨ − F is the residual.

31

(f) Write a program in Matlab to solve AU = F for the second order
method. The matrix A is symmetric and tridiagonal (has nonzeros
only on three diagonals, the main diagonal, and the immediate sub
and super diagonals). Use the Matlab matrix operation appropriate
for symmetric positive definite tridiagonal matrices. Do a conver-
gence study to show that the results are second order accurate.

(g) (extra credit) Program the fourth order method and check that the
results are fourth order when f(x) = sin(πx) but not when f(x) =
max(0, .15 − (x − .5)2). Why are the results different?

12. This exercise explores conditioning of the non-symmetric eigenvalue prob-
lem. It shows that although the problem of computing the fundamental
solution is well-conditioned, computing it using eigenvalues and eigen-
vectors can be an unstable algorithm because the problem of computing
eigenvalues and eigenvectors is ill-conditioned. For parameters 0 < λ < µ,
there is a Markov chain transition rate matrix, A, whose entries are ajk = 0
if |j − k| > 1 If 1 ≤ j ≤ n− 2, aj,j−1 = µ, ajj = −(λ + µ), and aj,j+1 = λ
(taking j and k to run from 0 to n − 1). The other cases are a00 = −λ,
a01 = λ, an−1,n−1 = −µ, and an−1,n−2 = µ. This matrix describes a
continuous time Markov process with a random walker whose position at
time t is the integer X(t). Transitions X → X + 1 happen with rate λ
and transitions X → X − 1 have rate µ. The transitions 0 → −1 and
n − 1 → n are not allowed. This is the M/M/1 queue used in operations
research to model queues (X(t) is the number of customers in the queue
at time t, λ is the rate of arrival of new customers, µ is the service rate. A
customer arrival is an X → X +1 transition.). For each t, we can consider
the row vector p(t) = (p1(t), . . . , pn(t)) where pj(t) = Prob(X(t) = j).
These probabilities satisfy the differential equation ṗ = d

dtp = pA. The
solution can be written in terms of the fundamental solution, S(t), which
in an n × n matrix that satisfies Ṡ = SA, S(0) = I.

(a) Show that if Ṡ = SA, S(0) = I, then p(t) = p(0)S(t).

(b) The matrix exponential may be defined through the Taylor series
exp(B) =

∑∞
k=0

1
k!B

k. Use matrix norms and the fact that
∥∥Bk

∥∥ ≤
‖B‖k

to show that the infinite sum of matrices converges.

(c) Show that the fundamental solution is given by S(t) = exp(tA). Top
do this, it is enough to show that exp(tA) satisfies the differential
equation d

dt exp(tA) = exp(tA)A using the infinite series, and show
exp(0A) = I.

(d) Suppose A = LΛR is the eigenvalue and eigenvector decomposition of
A, show that exp(tA) = L exp(tΛ)R, and that exp(tΛ) is the obvious
diagonal matrix.

(e) Use the Matlab function [R,Lam] = eig(A); to calculate the eigen-
values and right eigenvector matrix of A. Let rk be the kth column
of R. For k = 1, . . . , n, print rk, Ark, λkrk, and ‖λk − Ark‖ (you

32

choose the norm). Mathematically, one of the eigenvectors is a mul-
tiple of the vector 1 defined in part h. The corresponding eigenvalue
is λ = 0. The computed eigenvalue is not exactly zero. Take n = 4
for this, but do not hard wire n = 4 into the Matlab code.

(f) Let L = R−1, which can be computed in Matlab using L=R^(-1);.
Let lk be the kth row of L, check that the lk are left eigenvectors of
A as in part e. Corresponding to λ = 0 is a left eigenvector that is a
multiple of p∞ from part h. Check this.

(g) Write a program in Matlab to calculate S(t) using the eigenvalues and
eigenvectors of A as above. Compare the results to those obtained
using the Matlab built in function S = expm(t*A);. Use the values
λ = 1, µ = 4, t = 1, and n ranging from n = 4 to n = 80. Compare
the two computed Ŝ(t) (one using eigenvalues, the other just using
expm) using the l1 matrix norm. Use the Matlab routine cond(R) to
compute the condition number of the eigenvector matrix, R. Print
three columns of numbers, n, error, condition number. Comment on
the quantitative relation between the error and the condition number.

(h) Here we figure out which of the answers is correct. To do this, use the
known fact that limt→∞ S(t) = S∞ has the simple form S∞ = 1p∞,
where 1 is the column vector with all ones, and p∞ is the row vector
with p∞,j = ((1 − r)/(1 − rn))rj , with r = λ/µ. Take t = 3 ∗ n
(which is close enough to t = ∞ for this purpose) and the same
values of n and see which version of S(t) is correct. What can you
say about the stability of computing the matrix exponential using
the ill conditioned eigenvalue/eigenvector problem?

13. This exercise explores eigenvalue and eigenvector perturbation theory for
the matrix A defined in exercise 12. Let B be the n × n matrix with
bjk = 0 for all (j, k) except b00 = −1 and b1,n−1 = 1 (as in exercise 12,
indices run from j = 0 to j = n − 1). Define A(s) = A + sB, so that

A(0) = A and dA(s)
ds = B when s = 0.

(a) For n = 20, print the eigenvalues of A(s) for s = 0 and s = .1.
What does this say about the condition number of the eigenvalue
eigenvector problem? All the eigenvalues of a real tridiagonal matrix
are real18 but that A(s = .1) is not tridiagonal and its eigenvalues
are not real.

(b) Use first order eigenvalue perturbation theory to calculate λ̇k = d
dsλk

when s = 0. What size s do you need for ∆λk to be accurately
approximated by sλ̇k? Try n = 5 and n = 20. Note that first order
perturbation theory always predicts that eigenvalues stay real, so
s = .1 is much too large for n = 20.

18It is easy to see that if A is tridiagonal then there is a diagonal matrix, W , so that WAW−1

is symmetric. Therefore, A has the same eigenvalues as the symmetric matrix WAW−1.

33

