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Many dynamical systems are modeled by first order systems of differential
equations. An n component vector z(t) = (x1(t),...,x,(t)), models the state
of the system at time ¢. The dynamics are modelled by

W i(0) = Flale). 1) ()
where f(x,t) is an n component function, f(z,t) = fi(x,t),..., fu(z,t)). The
system is autonomous if f = f(x), i.e., if f is independent of t. A trajectory is a
function, z(t), that satisfies (1). The initial value problem is to find a trajectory
that satisfies the initial condition'

2(0) = xg , (2)

with z¢ being the initial data. In practice we often want to specify initial data
at some time other than g = 0. We set to = 0 for convenience of discussion. If
f(z,t) is a differentiable function of  and ¢, then the initial value problem has
a solution trajectory defined at least for ¢ close enough to t3. The solution is
unique as long as it exists.?.

Some problems can be reformulated into the form (1), (2). For example,
suppose F(r) is the force on an object of mass m if the position of the object is
r € R3. Newton’s equation of motion: F = ma is

mE" P 3)

This is a system of three second order differential equations. The velocity at
time ¢ is v(t) = 7(¢). The trajectory, r(t), is determined by the initial position,
ro = r(0), and the initial velocity, vo = v(0).

We can reformulate this as a system of six first order differential equations
for the position and velocity, z(t) = (r(¢),v(t)). In components, this is

z1() 1(t)
X9 (t) T2 (t)
zg(t) | _ | rs(t)
w4(t) v (t)
w5(t) va(t)
() v3(t)

The dynamics are given by 7 = v and © = =~ F/(r). This puts the equations (3)

I There is a conflict of notation that we hope causes little confusion. Sometimes, as here,
xz refers to component k of the vector . More often z; refers to an approximation of the
vector x at time t.

2This is the existence and uniqueness theorem for ordinary differential equations. See any
good book on ordinary differential equations for details.



into the form (1) where

h Ty
P x5

f _ f3 — T6
fa %F1(171;1727$3)
f5 ¥F2(171;I27x3)
fe —F3(x1,72,73)

There are variants of this scheme, such as taking x1 = ry, xo = 71, T3 = 79, etc.,
or using the momentum, p = ms rather than the velocity, v = 7. The initial
values for the six compenents xg = z(tg) are given by the initial position and
velocity components.

1 Time stepping and the forward Euler method

For simplicity this section supposes f does not depend on ¢, so that (1) is just
& = f(z). Time stepping, or marching, means computing approximate values
of z(t) by advancing time in a large number of small steps. For example, if we
know x(t), then we can estimate z(¢ + At) using

a(t+ At) & 2(t) + Ati(t) = o(t) + ALf(a(t) . (4)

If we have an approximate value of z(t), then we can use (4) to get an approx-
imate value of x(t + At).

This can be organized into a method for approximating the whole trajectory
x(t) for 0 <t <T. Choose a time step, At, and define discrete times ¢, = kAt
for k =0,1,2,.... We compute a sequence of approximate values zj ~ z(ty).
The approximation (4) gives

Tl ~ 2(thy1) = (e + At) = x(ty) + Atf(zr) =z, + Atf(ay) .
The forward Fuler method takes this approximation as the definition of x4 ;:
Tpt1 = xp + Atf(zr) - (5)

Starting with initial condition xy (5) allows us to calculate z1, then xo, and so
on as far as we like.

Solving differential equations sometimes is called integration. This is because
of the fact that if f(z,¢) is independent of z, then &(t) = f(¢) and the solution
of the initial value problem (1) (2) is given by

z(t) = z(0) —i—/o f(s)ds .

If we solve this using the rectangle rule with time step At, we get

k—1
o(ty) ~ ap = 2(0) + At Y f(t) .
j=0



We see from this that a1 = xp + Atf (¢ ), which is the forward Euler method
in this case. We know that the rectangle rule for integration is first order
accurate. This is a hint that the forward Euler method is first order accurate
more generally.

We can estimate the accuracy of the forward Euler method using an infor-
mal error propagation equation. The error, as well as the solution, evolves (or
propagates) from one time step to the next. We write the value of the exact
solution at time t; as Ty = x(fx). The error at time ¢y is e = xp — T. The
residual is the amount by which 7, fails to satisfy the forward Euler equations®
(5):

Tp1 = T + Atf(Tr) + Atry (6)

which can be rewritten as

o= L= ). 7

In Section ?? we showed that

x(ty + At) — z(ty)
At
Together with & = f(x), this shows that

=i(ty) + %i(tk) + O(A#) .

re = %a‘é(m) +0(A8?) (8)

which shows that r, = O(At).
The error propagation equation, (10) below, estimates e in terms of the
residual. We can estimate ey, = xp, — T, = x — x(t;) by comparing (5) to (6)

exr1 = ex + At (f(.%‘(k)) — f(z)) — Atry, .

This resembles the forward Euler method applied to approximating some func-
tion e(t). Being optimistic, we suppose that x, and x(tx) are close enough to
use the approximation (f’ is the Jacobian matrix of f as in Section ?7?)

flxy) = (@) +ex) = f(@%) + f'(@x)er
and then
€k+1 N € + At (f’(fk)ek — ’I”k) . (9)

If this were an equality, it would imply that the e satisfy the forward Euler
approximation to the differential equation

e=f'(z(t)e—r(t), (10)
where z(t) satisfies (1), e has initial condition e(0) = 0, and 7(t) is given by (8):
r(t) = %w(t) . (11)

3We take out one factor of At so that the order of magnitude of r is the order of magnitude
of the error e.



The error propagation equation (10) is linear, so e(t) should be proportional to*
r, which is proportional to At. If the approximate e(t) satisfies ||e(t)|| = C(¢)At,
then the exact e(t) should satisfy |le(t)|| = O(At), which means there is a C(t)
with

le(®)ll < C(t)At . (12)

This is the first order accuracy of the forward Euler method.

It is important to note that this argument does not prove that the forward
Euler method converges to the correct answer as At — 0. Instead, it assumes the
convergence and uses it to get a quantitative estimate of the error. The formal
proof of convergence may be found in any good book on numerical methods for
ODEs, such as the book by Isaiah Iserles.

If this analysis is done a little more carefully, it shows that there is an
asymptotic error expansion

T ~ 2(ty) + Atuy (ty) + AtPug(ty) +-- - . (13)

The leading error coefficient, u;(t), is the solution of (10). The higher or-
der coefficients, us(t), etc. are found by solving higher order error propagation
equations.

The modified equation is a different approach to error analysis that allows
us to determine the long time behavior of the error. The idea is to modify
the differential equaion (1) so that the solution is closer to the forward Euler
sequence. We know that xp = z(t;) + O(At). We seek a differential equation
1y = g(y) so that z = y(tx) + O(At?) We construct an error expansion for the
equation itself rather than the solution.

It is simpler to require y(¢) so satisfy the forward Euler equation at each ¢,
not just the discrete times t:

y(t + At) = y(t) + Atf(y(t)) . (14)
We seek
9(y, At) = go(y) + Atgi(y) + - (15)

so that the solution of (14) satisfies § = g(y) + O(At?). We combine the expan-
sion (15) with the Taylor series

At?
y(t+ At) = y(t) + Aty(t) + ——i(t) + O(AL%) ,
to get (dividing both sides by At, O(At3)/At = O(At?).):

2
y(t) + Aty (t) + ATt?J(t) +O(AP) = y(t)+Atf(y(t))

ao(y(t) + M) + 24t = f(u(t) + O(AR)

2

4The value of e(t) depends on the values of 7(s) for 0 < s < ¢t. We can solve & = f/(z)u—w,

where w = %:'(3, then solve (10) by setting e = Atu. This shows that |le(t)|| = At ||u(¢)]|, which

is what we want, with C(¢) = ||u(t)].




Equating the leading order terms gives the unsurprising result

90(y) = f(y),
and leaves us with .
(D) + 1) = O(A1) (16)
We differentiate y = f(y) + O(At) and use the chain rule, giving
j=i = () +o@n)
= f'(»u(t) + O(At)
i = ffy)+0o(At)

Substituting this into (16) gives

01() =~/ W)

so the modified equation, with the first correction term, is

. At
§=10) - ST W) (1)
A simple example illustrates these points. The nondimensional harmonic
oscillator equation is # = —r. The solution is r(¢) = asin(t) + bcos(t), which

oscillates but does not grow or decay. We write this in first order as ; = x9,

j?QZ—Il,OI‘ J
Tl o\ Z2
a(n)-(2) 1
x r_ 01 e 0 1 T2\
Therefore, f(z) = (—xi)’ /= (_1 O)’ and f'f = (_1 O) (—:zrj) =

_zl ), so (17) becomes

)
Ay _ [ v n At (N _ (B 1\ (wm
dt \ y2 -4 2 \y2 -1 & Y2

We can solve this by finding eigenvalues and eigenvectors, but a simpler trick

is to use a partial integrating factor and set y(t) = e22%z(t), where # =

< 0 1> z. Since z1(t) = asin(t) + bcos(t), we have our approximate nu-

-1 0
merical solution y; (t) = ez (asin(t) + bcos(t)). Therefore

le(t)ll ~ (eF40t —1) . (19)

This modified equation analysis confirms that forward Euler is first order
accurate. For small At, we write ezAt ] %At -t so the error is about
At - t (asin(t) 4+ bcos(t)). Moreover, it shows that the error grows with ¢. For
each fixed ¢, the error satisfies |le(t)|| = O(At) but the implied constant C(t)

(in [le(t)|| < C(t)At) is a growing function of ¢, at least as large as C'(t) > £.



2 Runge Kutta methods

Runge Kutta® methods are a general way to achieve higher order approximate
solutions of the initial value problem (1), (2). Each time step consists of m
stages, each stage involving a single evaluation of f. The relatively simple four
stage fourth order method is in wide use today. Like the forward Euler method,
but unlike multistep methods, Runge Kutta time stepping computes x1 from
x without using values z; for j < k. This simplifies error estimation and
adaptive time step selection.

The simplest Runge Kutta method is forward Euler (5). Among the second

order methods is Heun’s®
&L o= Atf(xk, tk) (20)
52 = Atf(:vk + 51, tr + At) (21)
1
Tkl = Tk + B (fl + 52) . (22)

The calculations of & and &> are the two stages of Heun’s method. Clearly they
depend on k, though that is left out of the notation.

To calculate zy from z using a Runge Kutta method, we apply take k time
steps. Each time step is a transformation that may be written

~

Tk4+1 — S(Ik,tk,At) .

As in Chapter ??, we express the general time step as” z/ = §(E,t, At). This
S approximates the exact solution operator, S(Z,t, At). We say that 2/ =
S(Z,t, At) if there is a trajectory satisfying the differential equation (1) so that
x(t) =7 and ¢’ = x(t + At). In this notation, we would give Heun’s method as
o' = S(T,At) = T+ 1L (& + &), where & = f(T,t, At), and & = f(T+E&1,t, At).

The best known and most used Runge Kutta method, which often is called
the Runge Kutta method, has four stages and is fourth order accurate

&1 = Atf(T,1) (23)
& = Atf(T+ %51,t+ %At) (24)
& = Atf(T+ %{2, t+ %At) (25)
& = Atf(T+E,t+ Ab) (26)
= T+ % (61428 + 28+ &) - (27)

5Carl Runge was Professor of applied mathematics at the turn of the 20th century in
Gottingen, Germany. Among his colleagues were David Hilbert (of Hilbert space) and Richard
Courant. But Courant was forced to leave Germany and came to New York to found the
Courant Institute. Kutta was a student of Runge.

SHeun, whose name rhymes with “coin”, was another student of Runge.

"The notation x’ here does not mean the derivative of = with respect to ¢ (or any other
variable) as it does in some books on differential equations.



Understanding the accuracy of Runge Kutta methods comes down to Taylor
series. The reasoning of Section 1 suggests that the method has error O(At?) if

~

S@,t,At) = ST, t, At) + At r (28)

where ||7]| = O(AtP). The reader should verify that this definition of the resid-
ual, r, agrees with the definition in Section 1. The analysis consists of expanding
both S(z,t, At) and S(Z, t, At) in powers of At. If the terms agree up to order
AtP but disagree at order AtPt! then p is the order of accuracy of the overall
method.

We do this for Heun’s method, allowing f to depend on ¢ as well as x. The
calculations resemble the derivation of the modified equation (17). To make the
expansion of S, we have z(t) =T, so

_ . At? 3
ot + At) =T + Ati(t) + ——i(t) + O(AF’) .

Differentiating with respect to ¢ and using the chain rule gives:

Lod. d / .
b= i= Ef(ac(t),t) = fi(x(t),t)E(t) + 0 f(x(t), 1) ,
(t) = f'(Z,t) (T, t) + O f (T, 1) .
This gives

S(@,t,At) =T + Atf(T,t) + ATtQ (f'(@, ) f (@, t) + Ouf (T, 1)) + O(AL®) . (29)

To make the expansion of S for Heun’s method, we first have & = Atf(z, t),
which needs no expansion. Then

& = ALf(T+ELt+ AL
= At(f@,t)+ (T, )6 + 0 f (T, 1) At + O(At?))
= Atf(@,t)+ AP (f' (7, 0) (T, 1) + 0 f (T, 1)) + O(AL) .

Finally, (22) gives

, _ 1
o= T+5(G +&2)

1
— T4 5{Altf(f, )+ [ALFE ) + AR (/@0 (@, 6) + f(7.0) | } + O(ar)
Comparing this to (29) shows that
S(z,t,At) = S(T,t, At) + O(A) .

which is the second order accuracy of Heun’s method. The same kind of analysis

shows that the four stage Runge Kutta method is fourth order accurate, but it
would take a full time week. It was Kutta’s thesis.



3 Linear systems and stiff equations

A good way to learn about the behavior of a numerical method is to ask what
it would do on a properly chosen model problem. In particular, we can ask how
an initial value problem solver would perform on a linear system of differential
equations

T =Ax. (30)

We can do this using the eigenvalues and eigenvectors of A if the eigenvectors
are not too ill conditioned. If® Ar, = \orq and z(t) = 3" _, ua(t)ra, then the
components u,, satisfy the scalar differential equations

U = Aalla - (31)

Suppose zp = x(tx) is the approximate solution at time t;. Write xp =
> | UakTa. For a majority of methods, including Runge Kutta methods and
linear multistep methods, the u,x (as functions of k) are what you would get
by applying the same time step approximation to the scalar equation (31).
The eigenvector matrix, R, (see Section ??), that diagonalizes the differential
equation (30) also diagonalizes the computational method. The reader should
check that this is true of the Runge Kutta methods of Section 2.

One question this answers, at least for linear equations (30), is how small
the time step should be. From (31) we see that the A, have units of 1/time, so
the 1/|\,| have units of time and may be called time scales. Since At has units
of time, it does not make sense to say that At is small in an absolute sense, but
only relative to other time scales in the problem. This leads to the following:
Possibility: A time stepping approximation to (30) will be accurate only if

max At Ao < 1. (32)

Although this possibility is not true in every case, it is a dominant technical
consideration in most practical computations involving differential equations.
The possibility suggests that the time step should be considerably smaller than
the smallest time scale in the problem, which is to say that At should resolve
even the fastest time scales in the problem.

A problem is called stiff if it has two characteristics: (i) there is a wide range
of time scales, and (i) the fastest time scale modes have almost no energy. The
second condition states that if |\, is large (relative to other eigenvalues), then
|te | is small. Most time stepping problems for partial differential equations are
stiff in this sense. For a stiff problem, we would like to take larger time steps
than (32):
for all a with u, signifi-

At |da| <1 {cantly different from zero.

(33)

What can go wrong if we ignore (32) and choose a time step using (33) is
numerical instability. If mode u, is one of the large |\,| small |u,| modes,

8We call the eigenvalue index a to avoid conflict with k, which we use to denote the time
step.



it is natural to assume that the real part satisfies Re(A,) < 0. In this case
we say the mode is stable because |uq(t)| = |uq(0)] e*? does not increase as
t increases. However, if At\, is not small, it can happen that the time step
approximation to (31) is unstable. This can cause the uq to grow exponentially
while the actual u, decays or does not grow. Exercise 8 illustrates this. Time
step restrictions arising from stability are called CFL conditions because the
first systematic discussion of this possibility in the numerical solution of partial
differential equations was given in 1929 by Richard Courant, Kurt Friedrichs,
and Hans Levy.

4 Adaptive methods

Adaptive means that the computational steps are not fixed in advance but are
determined as the computation proceeds. Section 77, discussed an integration
algorithm that chooses the number of integration points adaptively to achieve
a specified overall accuracy. More sophisticated adaptive strategies choose the
distribution of points to maximize the accuracy from a given amount of work.

For example, suppose we want an TforI= f02 f(z)dz so that ‘f— I‘ < .06. It

might be that we can calculate I; = fol f(z)dx to within .03 using Az = .1 (10

points), but that calculating I = f12 f(z)dx to within .03 takes Az = .02 (50
points). It would be better to use Az = .1 for I} and Az = .02 for I (60 points
total) rather than using Az = .02 for all of I (100 points).

Adaptive methods can use local error estimates to concentrate computational
resources where they are most needed. If we are solving a differential equation
to compute z(t), we can use a smaller time step in regions where x has large
accelleration. There is an active community of researchers developing systematic
ways to choose the time steps in a way that is close to optimal without having
the overhead in choosing the time step become larger than the work in solving
the problem. In many cases they conclude, and simple model problems show,
that a good strategy is to equidistribute the local truncation error. That is, to
choose time steps Aty so that the the local truncation error py, = Atyry is nearly
constant.

If we have a variable time step Atg, then the times tp1 = ¢ + Aty form
an irregular adapted mesh (or adapted grid). Informally, we want to choose a
mesh that resolves the solution, x(t) being calculated. This means that knowing
the x, & x(t;) allows you make an accurate reconstruction of the function (¢),
say, by interpolation. If the points t; are too far apart then the solution is
underresolved. If the ) are so close that x(tx) is predicted accurately by a few
neighboring values (x(t;) for j = k £ 1,k £+ 2, etc.) then x(t) is overresolved,
we have computed it accurately but paid too high a price. An efficient adaptive
mesh avoids both underresolution and overresolution.

Figure 1 illustrates an adapted mesh with equidistributed interpolation er-
ror. The top graph shows a curve we want to resolve and a set of points that
concentrates where the curvature is high. Also also shown is the piecewise linear

10



curve that connects the interpolation points. On the graph is looks as though
the piecewise linear graph is closer to the curve near the center than in the
smoother regions at the ends, but the error graph in the lower frame shows this
is not so. The reason probably is that what is plotted in the bottom frame is
the vertical distance between the two curves, while what we see in the picture is
the two dimensional distance, which is less if the curves are steep. The bottom
frame illustrates equidistribution of errer. The interpolation error is zero at the
grid points and gets to be as large as about —6.3 x 1073 in each interpolation
interval. If the points were uniformly spaced, the interpolation error would be
smaller near the ends and larger in the center. If the points were bunched even
more than they are here, the interpolation error would be smaller in the center
than near the ends. We would not expect such perfect equidistribution in real
problems, but we might have errors of the same order of magnitude everywhere.

For a Runge Kutta method, the local truncation error is p(z, t, At) = S(x,t, At)—
S(x,t, At). We want a way to estimate p and to choose At so that |p| = e, where
e is the value of the equidistributed local truncation error. We suggest a method
related to Richardson extrapolation (see Section ?7?), comparing the result of
one time step of size At to two time steps of size At/2. The best adaptive Runge
Kutta differential equation solvers do not use this generic method, but instead
use ingenious schemes such as the Runge Kutta Fehlberg five stage scheme that
simultaneously gives a fifth order S5, but also gives an estimate of the difference
between a fourth order and a fifth order method, S5—S4. The method described
here does the same thing with eight function evaluations instead of five.

The Taylor series analysis of Runge Kutta methods indicates that p(x,t, At) =
AtPTlo(x,t) + O(AtPT2). We will treat o as a constant because the all the =
and ¢ values we use are within O(At) of each other, so variations in o do not
effect the principal error term we are estimating. With one time step, we get
' = S(T,t, At) With two half size time steps we get first 7, = S(T,t, At/2),
then Zy = S(F1,t + At/2, At/2).

We will show, using the Richardson method of Section 77, that

a' =% = (1-277) p(z,t, At) + O(AtPT1) . (34)

13 2

We need to use the semigroup property of the solution operator: If we “run
the exact solution from T for time At/2, then run it from there for another time
At/2, the result is the same as running it from Z for time At. Letting x be the
solution of (1) with z(¢t) = Z, the formula for this is

S(@,t,At) = S(x(t+ At/2),t+ At/2,At/2)
= S(S(&,t, At/2),t+ At/2,At)2) .
We also need to know that S(x,t, At) = 2 + O(At) is reflected in the Jacobian

matrix S’ (the matrix of first partials of S with respect to the x arguments with
t and At fixed)?: S'(x,t, At) = I + O(At).

9This fact is a consequence of the fact that S is twice differentiable as a function of all
its arguments, which can be found in more theoretical books on differential equations. The
Jacobian of f(z) =z is f/(z) = I

11



A function interpolated on 16 unevenly spaced points
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Figure 1: A nonuniform mesh for a function that needs different resolution
in different places. The top graph shows the function and the mesh used to
interpolate it. The bottom graph is the difference between the function and the
piecewise linear approzimation. Note that the interpolation error equidistributed
though the mesh is much finer near x 30.



The actual calculation starts with

i = St At)2)
= S(T,t,At)2) + 2~ CTOAL= D5 4 O(At= @) |

and

Ty = S(F,t+ At At/2)
S(T1,t+ At/2,At)2) + 2~ PTU AP+ 5 L O(AL=PF2)) |
We simplify the notation by writing #; = 2(t+At/2)+u with u = 2~ P+t Ao
O(At=P+2)), Then |Jul| = O(At~P+1) and also (used below) At ||lu|| = O(At~(P+2)
and (since p > 1) [[u]® = O(At=2P+2) = O(At~#+2)). Then
S(F1 b+ At/2,AL2) = S(a(t+ At/2) +u,t + At/2, At/2)
= S(x(t+ At/2),t+ At/2,At/2) + S'u+ O (||u||2>

= S(x(t+At/2),t+ At/2, AL/2) +u+ O (||u||2)
= 8@t At) + 27 PTUAre + w0 (AP?)
Altogether, since 2 -2~ (P+1) = 2-P_ this gives
Ty = S(T,t,At) + 27 PAtP T o 4+ O (AtPT?) .
Finally, a single size At time step has
o' = X (T, At t) + AtPT o + O (APF?)

Combining these gives (34). It may seem like a mess but it has a simple un-
derpinning. The whole step produces an error of order AtP*!. Each half step
produces an error smaller by a factor of 2!, which is the main idea of Richard-
son extrapolation. Two half steps produce almost exactly twice the error of one
half step.

There is a simple adaptive strategy based on the local truncation error esti-
mate (34). We arrive at the start of time step k with an estimated time step size
Aty. Using that time step, we compute =’ = §(xk,tk, Aty) and Z5 by taking
two time steps from x with At /2. We then estimate py using (34):

~ 1
Pk—1_2_p

({E/ — 52) . (35)
This suggests that if we adjust Aty by a factor of p (taking a time step of size

pAty instead of Aty), the error would have been pP*1py. If we choose u to
exactly equidistribute the error (according to our estimated p, we would get

e= ol = = e/ BT (36)

13



We could use this estimate to adjust At and calculate again, but this may lead
to an infinite loop. Instead, we use Atx41 = pupAty.

Chapter 7?7 already mentioned the paradox of error estimation. Once we
have a quantitative error estimate, we should use it to make the solution more
accurate. This means taking

~

Tht1 = S(xk,tk,Atk) + ﬁk ,

which has order of accuracy p + 1, instead of the order p time step S. This
increases the accuracy but leaves you without an error estimate. This gives
an order p + 1 calculation with a mesh chosen to be nearly optimal for an
order p calculation. Maybe the reader can find a way around this paradox.
Some adaptive strategies reduce the overhead of error estimation by using the
Richardson based time step adjustment, say, every fifth step.

One practical problem with this strategy is that we do not know the quanti-
tative relationship between local truncation error and global error'®. Therefore
it is hard to know what e to give to achieve a given global error. One way
to estimate global error would be to use a given e and get some time steps
Aty, then redo the computation with each interval [t,t541] cut in half, taking
exactly twice the number of time steps. If the method has order of accuracy
p, then the global error should decrease very nearly by a factor of 2P, which
allows us to estimate that error. This is rarely done in practice. Another issue
is that there can be isolated zeros of the leading order truncation error. This
might happen, for example, if the local truncation error were proportional to a
scalar function . In (36), this could lead to an unrealistically large time step.
One might avoid that, say, by replacing pj, with min(ug,2), which would allow
the time step to grow quickly, but not too much in one step. This is less of a
problem for systems of equations.

5 Multistep methods

Linear multistep methods are the other class of methods in wide use. Rather than
giving a general discussion, we focus on the two most popular kinds, methods
based on difference approximations, and methods based on integrating f(x(t)),
Adams methods. Hybrids of these are possible but often are unstable. For some
reason, almost nothing is known about methods that both are multistage and
multistep.

Multistep methods are characterized by using information from previous
time steps to go from xp to xx11. We describe them for a fixed At. A simple
example would be to use the second order centered difference approximation
2(t) = (z(t + At) — z(t — At)) /2At to get

(Th+1 — wp—1) /248 = f(z1) ,

10 Adjoint based error control methods that address this problem are still in the research
stage (2006).
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or
Tht1 = Th—1 + 20t f(z) . (37)

This is the leapfrog'! method. We find that
Thy1 = Tp_1 + 2ALf (Tk) + AtO(AL?)

so it is second order accurate. It achieves second order accuracy with a single
evaluation of f per time step. Runge Kutta methods need at least two evalua-
tions per time step to be second order. Leapfrog uses x;—; and xj to compute
Zk+1, while Runge Kutta methods forget x;_; when computing zx41 from xj.

The next method of this class illustrates the subtletlies of multistep methods.
It is based on the four point one sided difference approximation

. 1 /1 1 1
i(t) = ~ (gx(t + At) + 5a;(zt) —a(t — At) + gx(t - 2At)) + 0 (At%) .
This suggests the time stepping method

1 1 1 1
flzk) = A <§Ik+1 + 3Tk = Th-1 + 6$k2> , (38)

which leads to
3 1
Tyl = 3Atf(:1?k) — Exk +3xr_1 — §Ik72 . (39)

This method never is used in practice because it is unstable in a way that Runge
Kutta methods cannot be. If we set f = 0 (to solve the model problem & = 0),
(38) becomes the recurrence relation

Tyl + gwk —3Tp—1 + %$k—2 =0, (40)
which has characteristic polynomial'® p(z) = 23 + %ZQ -3z + % Since one
of the roots of this polynomial has |z| > 1, general solutions of (40) grow
exponentially on a At time scale, which generally prevents approximate solutions
from converging as At — 0. This cannot happen for Runge Kutta methods
because setting f = 0 always gives 1 = xk, which is the exact answer in this
case.
Adams methods use old values of f but not old values of x. We can integrate
(1) to get
tht1
otir) = () + [ Sla0)dt. (41)
tr

An accurate estimate of the integral on the right leads to an accurate time step.
Adams Bashforth methods estimate the integral using polynomial extrapolation

1 Leapfrog is a game in which two or more children move forward in a line by taking turns
jumping over each other, as (37) jumps from xy_; to x4 using only f(zy).
121f p(2) = 0 then 2, = 2 is a solution of (40).
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from earlier f values. At its very simplest we could use f(z(t)) ~ f(x(tx)),
which gives
tht1
| et~ (e - ) fatte)
k
Using this approximation on the right side of (41) gives forward Euler.
The next order comes from linear rather than constant extrapolation:

fla(tr)) = fz(tr))

te —tp—1

f(@(t) = fz(tr) + (8 — tr)

With this, the integral is estimated as (the generalization to non constant At is
Exercise 77):

e 2 f(x — J(x(tr—
[ st = ststeta + S LD Sten)

Q

3 1
At 31a(0) - 5 rtat)]
The second order Adams Bashforth method for constant At is

Th+1 = Tk + At [gf(xk) — %f(xkl):| . (42)
To program higher order Adams Bashforth methods we need to evaluate the
integral of the interpolating polynomial. The techniques of polynomial interpo-
lation from Chapter ?? make this simpler.

Adams Bashforth methods are attractive for high accuracy computations
where stiffness is not an issue. They cannot be unstable in the way (39) is
because setting f = 0 results (in (42), for example) in zx11 = x, as for Runge
Kutta methods. Adams Bashforth methods of any order or accuracy require one
evaluation of f per time step, as opposed to four per time step for the fourth
order Runge Kutta method.

6 Implicit methods

Implicit methods use f(xg41) in the formula for zx11. They are used for stiff
problems because they can be stable with large AA¢ (see Section 3) in ways
explicit methods, all the ones discussed up to now, cannot. An implicit method
must solve a system of equations to compute xy1.

The simplest implicit method is backward Fuler:

Tpt1 = xp + Atf(p41) - (43)

This is only first order accurate, but it is stable for any A and At if Re(A) < 0.
This makes it suitable for solving stiff problems. It is called implicit because
Zp4+1 is determined implicitly by (43), which we rewrite as

F(xp41,At) =0 , where F(y,At) =y — Atf(y) — zk , (44)
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To find x41, we have to solve this system of equations for y.
Applied to the linear scalar problem (31) (dropping the « index), the method
(43) becomes ugy1 = up + AtAugy1, or

1
Ukt = T A Uk

This shows that |ug41| < Juk| if At > 0 and A is any complex number with
Re(A) < 0. This is in partial agreement with the qualitative behavior of the
exact solution of (31), u(t) = e*u(0). The exact solution decreases in time if
Re(A) < 0 but not if Re(A) = 0. The backward Euler approximation decreases in
time even when Re(A\) = 0. The backward Euler method artificially stabilizes a
neutrally stable system, just as the forward Euler method artificially destabilizes
it (see the modified equation discussion leading to (19)).

Most likely the equations (44) would be solved using an iterative method as
discussed in Chapter ??7. This leads to inner iterations, with the outer iteration
being the time step. If we use the unsafeguarded local Newton method, and let
j index the inner iteration, we get F' = I — Atf’ and

Yit1 = Yj — (I - Atf’(yj))il(yj — Atf(y;) — ar) (45)

hoping that y; — xr11 as j — oo. We can take initial guess yo = x, or, even
better, an extrapolation such as yo = zx + At(zr — xp—1)/At = 22, — Tf—1.
With a good initial guess, just one Newton iteration should give xy4; accurately
enough.

Can we use the approximation J = I for small At? If we could, the Newton
iteration would become the simpler functional iteration (check this)

Yir1 = o + At f(y;) - (46)

The problem with this is that it does not work precisely for the stiff systems
we use implicit methods for. For example, applied to @ = Au, the functional
iteration diverges (|y;| — oo as j — o0) for AtA < —1.

Most of the explicit methods above have implicit anologues. Among implicit
Runge Kutta methods we mention the trapezoid rule

Thk+1 — Tk 1

At §(f(xk+1) + f(ax)) - (47)

There are backward differentiation formula, or BDF methods based on higher
order one sided approximations of &(t;+1). The second order BDF method uses
(?7):
i(t) = 1 §z;(t) —2z(t — At) + 1a:(lt —2At) ) + O (At?)
COAE\2 2 ’

to get

f(.%‘(tk_,_l)) = i‘(tk_;,_l) = (gx(tk-H) — 2$(tk) + %Zv(tk_l)) + O (Aﬁ) ,
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and, neglecting the O (At2) error term,

2At 4 1
Th+1 — Tf(IkJrl) = =Tk — =Lk—-1 - (48)

3 3

The Adams Molton methods estimate ftt:“ f(z(t))dt using polynomial in-
terpolation using the values f(xp4+1), f(xk), and possibly f(zx—1), etc. The
second order Adams Molton method uses f(zr41) and f(zg). It is the same
as the trapezoid rule (47). The third order Adams Molton method also uses
f(zk—1). Both the trapezoid rule (47) and the second order BDF method (48)
both have the property of being A-stable, which means being stable for (31)
with any A and At as long as Re(A) < 0. The higher order implicit methods
are more stable than their explicit counterparts but are not A stable, which is a
constant frustration to people looking for high order solutions to stiff systems.

7 Computing chaos, can it be done?

In many applications, the solutions to the differential equation (1) are chaotic.®
The informal definition is that for large ¢ (not so large in real applications) z(t)
is an unpredictable function of z(0). In the terminology of Section 5, this means
that the solution operator, S(xg,0,t), is an ill conditioned function of zg.

The dogma of Section 77 is that a floating point computation cannot give
an accurate approximation to S if the condition number of S is larger than
1/€mach ~ 1016, But practical calculations ranging from weather forcasting to
molecular dynamics violate this rule routinely. In the computations below, the
condition number of S(z,t) increases with ¢ and crosses 10*® by ¢t = 3 (see
Figure 3). Still, a calculation up to time ¢ = 60 (Figure 4, bottom), shows the
beautiful butterfly shaped Lorentz attractor, which looks just as it should.

On the other hand, in this and other computations, it truly is impossible
to calculate details correctly. This is illustrated in Figure 2. The top picture
plots two trajectories, one computed with At = 4 x 10~ (dashed line), and the
other with the time step reduced by a factor of 2 (solid line). The difference
between the trajectories is an estimate of the accuracy of the computations.
The computation seems somewhat accurate (curves close) up to time t = 5,
at which time the dashed line goes up to x ~ 15 and the solid line goes down
to x = —15. At least one of these is completely wrong. Beyond t ~ 5, the
two “approximate” solutions have similar qualitative behavior but seem to be
independent of each other. The bottom picture shows the same experiment with
At a hundred times smaller than in the top picture. With a hundred times more
accuracy, the approximate solution loses accuracy at t &~ 10 instead of ¢t ~ 5. If
a factor of 100 increase in accuracy only extends the validity of the solution by
5 time units, it should be hopeless to compute the solution out to t = 60.

13 James Glick has written a nice popular book on chaos. Neil Strogatz has a more technical
introduction that does not avoid the beautiful parts.
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The present numerical experiments are on the Lorentz equations, which are
a system of three nonlinear ordinary differential equations

& = oly—=)
) = w(p—2)-y
z = xy— Pz

with'* ¢ = 10, p = 28, and § = %. The C/C++ program outputs (,y, 2)
for plotting every ¢ = .02 units of time, though there many time steps in each
plotting interval. The solution first finds its way to the butterfly shaped Lorentz
attractor then stays on it, travelling around the right and left wings in a seem-
ingly random (technically, chaotic) way. The initial data x = y = z = 0 are not
close to the attractor, so we ran the differential equations for some time before
time ¢t = 0 in order that (z(0),4(0), 2(0)) should be a typical point on the at-
tractor. Figure 2 shows the chaotic sequence of wing choice. A trip around the
left wing corresponds to a dip of x(t) down to z ~ —15 and a trip around the
right wing corresponds to x going up to x =~ 15.

Sections 7?7 and 7?7 explain that the condition number of the problem of
calculating S(z,t) depends on the Jacobian matrix A(z,t) = 0,5(x,t). This
represents the sensitivity of the solution at time ¢ to small perturbations of the
initial data. Adapting notation from (??), we find that the condition number
of calculating x(t) from initial conditions x(0) = z is

k= [ A((0), &y 121

We can calculate A(x,t) using ideas of perturbation theory similar to those we
used for linear algebra problems in Section ?7?. Since S(z,t) is the value of a
solution at time ¢, it satisfies the differential equation

F(S(1) = (1)

We differentiate both sides with respect to z and interchange the order of dif-
ferentiation,

0 0 0
S I(S(ayt) = 5 S8(wt) = LS t) = A1),
to get (with the chain rule)
d 5
SA@0) = o f(8(1)
= F(S@1)- 0,8
A = (S t)A.1) . (49)

4 These can be found, for example, in http://wikipedia.org by searching on “Lorentz at-
tractor”.

19



Thus, if we have an initial value 2 and calculate the trajectory S(x,t), then we
can calculate the first variation, A(z,t), by solving the linear initial value prob-
lem (49) with initial condition A(z,0) = I (why?). In the present experiment,
we solved the Lorentz equations and the perturbation equation using forward
Euler with the same time step.

In typical chaotic problems, the first variation grows exponentially in time.
If 61(t) > o2(t) > -+ > on(t) are the singular values of A(z,t), then there
typically are Lyapounov exponents, ji, so that

o (t) ~ ehrt

More precisely,
L (o)

t—o0 t

If 11 > pin, the 12 condition number of A grows exponentially,

Kiz(A(z,t)) = Zl—(g ~ eli—pn)t

Figure 3 gives some indication that our Lorentz system has differing Lyapoounov
exponents. The top figure shows computations of the three singular values for
A(z,t). For 0 <t <= 2, it seems that o3 is decaying exponentially, making a
downward sloping straight line on this log plot. When o3 gets to about 10715,
the decay halts. This is because it is nearly impossible for a full matrix in double
precision floating point to have a condition number larger than 1/¢,,4c4 ~ 106,
When o3 hits 1071%, we have oy ~ 102, so this limit has been reached. These
trends are clearer in the top frame of Figure 4, which is the same calculation
carried to a larger time. Here oq(t) seems to be growing exponentially with a
gap between o1 and o3 of about 1/€,,4ch. Theory says that oo should be close to
one, and the computations are consistent with this until the condition number
bound makes o2 ~ 1 impossible.

To summarize, some results are quantitatively right, including the butterfly
shape of the attractor and the exponential growth rate of o1 (t). Some results
are qualitatively right but quantitatively wrong, including the values of z(t)
for ¢ >~ 10. Convergence analyses (comparing At results to At/2 results)
distinguishes right from wrong in these cases. Other features of the computed
solution are consistent over a range of At and consistently wrong. There is no
reason to think the condition number of A(z,t) grows exponentially until ¢ ~ 2
then levels off at about 10'®. Much more sophisticated computational methods
using the semigroup property show this is not so.

8 Software: Scientific visualization
Visualization of data is indispensable in scientific computing and computational

science. Anomolies in data that seem to jump off the page in a plot are easy
to overlook in numerical data. It can be easier to interpret data by looking at
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Lorentz, forward Euler, x component, dt = 4.00e-04 and dt = 2.00e-04
20 T T T T T T T T
— — —larger time step
smaller time step
1 '
15 ) N o )
i o :I i - i‘.
(1t 1" o)) J" I I
10 b R IR i il o e
1 Vi [REIN | Il 1
| | I
B o I ol ". ! '1;.;",."
L I Pl N ! IRl
\ ! Lt | | L RIsh
5+ T SR (RN | u” u\,\”t«‘
I e )‘ K ; ey
I Vi AN
| y] | RYA | | /
x \ | \ 1 ( /\ ; 2
| ~
(- iy L
! \ ! Al [\
I
| I )l [RINAT -
| ! |
I |
il | |
|
! i o
|
| 1 I Il -
| 1
‘ ! 1"
I g
R I
:\ vy I |
t | ! .
I |
' 1
-20 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
t
Lorentz, forward Euler, x component, dt = 4.00e-06 and dt = 2.00e-06
20 T T T T T T T
— — —larger time step \
smaller time step I | |
15+ U | f oo
| I |
Il ‘l |
[ | h I\
t | h I
10 | : I Iy
I |‘ h 'I
I ) :\ :\
I | | |
51 i I : o F
1 i | [
Rt v // 1 /l |
x n 2l / ! [
0 ! A ,/ I
ol ! AR |
| \ |
| L | AR VO
-5 sl Py i ' 1 | !
VI I ! i
\ ol |l |
! R ‘ b '
(R | Py |
W1 V! ! | [ |
el ] 1|‘ Lo 0o N
-10}+ T ‘I || R l| rhh I I 1 |
Hh L 1 |
TV II I 1 I i \
A N l: o
151 ! L ! 4
-20 1 1 1 1 1 1 1 1
0 2 4 8 10 12 14 16 18 20
t

Figure 2: Two convergence studies for the Lorentz system. The time steps in
the bottom figure are 100 times smaller than the time steps in the to figure. The
more accurate calculation loses accuracy at t = 10, as opposed to t =~ 5 with a

larger time step. The qualitative behavior is similar in all computations.
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Lorentz, singular values, dt = 4.00e-04
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Figure 3: Computed singluar values of the sensitivity matriz A(x,t) = 0,S(x,t)
with large time step (top) and ten times smaller time step (bottom). Top and
bottom curves are similar qualitatively though the fine details differ. Theory
predicts that middle singular value should be not grow or decay with t. The
times from Figure 2 at which the nwmerical solution loses accuracy are not
apparent here. In higher precision arithmetic, o3(t) would have continued to
decay exponentially. It is unlikely that computed singular values of any full
matriz would differ by less than a factor of 1/€macn =~ 1016,



Lorentz, singular values, dt = 4.00e-05
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Figure 4: Top: Singular values from Figure 8 computed for longer time. The
o1(t) grows exponentially, making a straight line on this log plot. The computed
o29(t) starts growing with the same exponential rate as o1 when roundoff takes
over. A correct computation would show o3(t) decreasing exponentially and
o2(t) neither growing nor decaying. Befgom: A beautiful picture of the butterfly
shaped Lorentz attractor. It is just a three dimensional plot of the solution curve.



pictures than by examining columns of numbers. For example, here are entries
500 to 535 from the time series that made the top curve in the top frame of
Figure 4 (multiplied by 1075).

0.1028 0.1020 0.1000 0.0963 0.0914 0.0864 0.0820
0.0790 0.0775 0.0776 0.0790 0.0818 0.0857 0.0910
0.0978 0.1062 0.1165 0.1291 0.1443 0.1625 0.1844
0.2104 0.2414 0.2780 0.3213 0.3720 0.4313 0.4998
0.5778 0.6649 0.7595 0.8580 0.9542 1.0395 1.1034

Looking at the numbers, we get the overall impression that they are growing in
an irregular way. The graph shows that the numbers have simple exponential
growth with fine scale irregularities superposed. It could take hours to get that
information directly from the numbers.

It can be a challenge to make visual sense of higher dimensional data. For
example, we could make graphs of z(t) (Figure 2), y(¢t) and z(t) as functions of
t, but the single three dimensional plot in the lower frame of Figure 4 makes
is clearer that the solution goes sometimes around the left wing and sometimes
around the right. The three dimensional plot (plot3 in Matlab) illuminates the
structure of the solution better than three one dimensional plots.

There are several ways to visualize functions of two variables. A contour plot
draws several contour lines, or level lines, of a function u(z,y). A contour line for
level uy, is the set of points (z,y) with u(z,y) = ug. It is common to take about
ten uniformly spaced values uy, but most contour plot programs, including the
Matlab program contour, allow the user to specify the ui. Most contour lines
are smooth curves or collections of curves. For example, if u(x,y) = 22 — 2,
the contour line u = up with ug # 0 is a hyperbola with two components. An
exception is ui = 0, the contour line is an X.

A grid plot represents a two dimensional rectangular array of numbers by
colors. A color map assigns a color to each numerical value, that we call c(u). In
practice, usually we specify ¢(u) by giving RGB values, c(u) = (r(u), g(u), b(u)),
where 7, g, and b are the intensities for red, green and blue respectively. These
may be integers in a range (e.g. 0 to 255) or, as in Matlab, floating point
numbers in the range from 0 to 1. Matlab uses the commands colormap and
image to establish the color map and display the array of colors. The image is
an array of boxes. Box (4, j) is filled with the color ¢(u(i, 7)).

Surface plots visualize two dimensional surfaces in three dimensional space.
The surface may be the graph of u(z,y). The Matlab commands surf and surfc
create surface plots of graphs. These look nice but often are harder to interpret
than contour plots or grid plots. It also is possible to plot contour surfaces of
a function of three variables. This is the set of (z,v, z) so that u(z,y, z) = ug.
Unfortunately, it is hard to plot more than one contour surface at a time.

Movies help visualize time dependent data. A movie is a sequence of frames,
with each frame being one of the plots above. For example, we could visualize
the Lorentz attractor with a movie that has the three dimensional butterfly
together with a dot representing the position at time ¢.
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The default in Matlab, and most other quality visualization packages, is
to render the user’s data as explicitly as possible. For example, the Matlab
command plot (u) will create a piecewise linear “curve” that simply connects
successive data points with straight lines. The plot will show the granularity of
the data as well as the values. Similarly, the grid lines will be clearly visible in a
color grid plot. This is good most of the time. For example, the bottom frame
of Figure 4 clearly shows the granularity of the data in the wing tips. Since the
curve is sampled at uniform time increments, this shows that the trajectory is
moving faster at the wing tips than near the body where the wings meet.

Some plot packages offer the user the option of smoothing the data using
spline interpolation before plotting. This might make the picture less angu-
lar, but it can obscure features in the data and introduce artifacts, such as
overshoots, not present in the actual data.

9 Resources and further reading

There is a beautiful discussion of computational methods for ordinary differen-
tial equations in Numerical Methods by pAlke Bjoork and Germund Dahlquist.
It was Dahlquist who created much of our modern understanding of the sub-
ject. A more recent book is A First Course in Numerical Analysis of Differential
Equations by Arieh Iserles. The book Numerical Solution of Ordinary Differ-
ential Equations by Lawrence Shampine has a more practical orientation.

There is good public domain software for solving ordinary differential equa-
tions. A particularly good package is LSODE (google it).

The book by Sans-Serna explains symplectic integrators and their appli-
cation to large scale problems such as the dynamics of large scape biological
molecules. It is an active research area to understand the quantitative relation-
ship between long time simulations of such systems and the long time behavior
of the systems themselves. Andrew Stuart has written some thoughtful oapers
on the subject.

The numerical solution of partial differential equations is a vast subject with
many deep specialized methods for different kinds of problems. For computing
stresses in structures, the current method of choice seems to be finite element
methods. For fluid flow and wave propagation (particularly nonlinear), the ma-
jority relies on finite difference and finite volume methods. For finite differences,
the old book by Richtmeyer and Morton still merit though there are more up
to date books by Randy LeVeque and by Bertil Gustavson, Heinz Kreiss, and
Joe Oliger.

10 Exercises

1. We compute the second error correction us(t) n (13). For simplicity, con-
sider only the scalar equation (n = 1). Assuming the error expansion, we
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have

flzr) = f(@r + Atuy(t) + Atus(ty) + O(AL))
(@) + f @) (Atuy (ty) + AtPus(ty))

+%f”(§k)At2U1(tk)2 + 0 (At%) .

Q

Also
w(ty + At) —x(ty) . At At
At = (1) + (0 + e (1) +0 (A7)
and
B 2
Atul(tk + AL —ui(te) Aty () + %al(tk) +0 (A .

At

Now plug in (13) on both sides of (5) and collect terms proportional to
At? to get

iy = f'(2(t))ug + %x@) (t) + %f”(z(t))ul (t)24777 .

. This exercise confirms what was hinted at in Section 1, that (19) correctly
predicts error growth even for ¢ so large that the solution has lost all
accuracy. Suppose k = R/At?, so that ¢, = R/At. The error equation
(19) predicts that the forward Euler approximation xp has grown by a
factor of e®/2 although the exact solution has not grown at all. We can
confirm this by direct calculation. Write the forward Euler approximation
to (18) in the form xy41 = Axy, where A is a 2 x 2 matrix that depends
on At. Calculate the eigenvalues of A up to second order in At: A\ =
1 + iAt + aAt? + O(At?), and Ay = 1 — iAt + bAL? + O(At3). Find
the constants a and b. Calculate pu; = In(\;) = iAt + cAt? + O(At?)
so that A\; = exp(iAt + cAt? + O(A#?)). Conclude that for k = R/At2,
N = exp(kpy) = e/AteR/2+0(AY " which shows that the solution has
grown by a factor of nearly e®/? as predicted by (19). This s**t is good
for something!

. Another two stage second order Runge Kutta method sometimes is called
the modified Fuler method. The first stage uses forward Euler to predict
the x value at the middle of the time step: & = %f(:z:k,tk) (so that
x(ty + At/2) ~ x + &1). The second stage uses the midpoint rule with
that estimate of z(t; + At/2) to step to time txq1: Tpy1 = xx + Atf(t +
%, x + &1). Show that this method is second order accurate.

. Show that applying the four stage Runge Kutta method to the linear sys-
tem (30) is equivalent to approximating the fundamental solution S(At) =
exp(AtA) by its Taylor series in At up to terms of order At* (see Exercise
?7). Use this to verify that it is fourth order for linear problems.
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5. Write a C/C++ program that solves the initial value problem for (1),
with f independent of ¢, using a constant time step, At. The arguments
to the initial value problem solver should be T' (the final time), At (the
time step), f(x) (specifying the differential equations), n (the number of
components of z), and x¢ (the initial condition). The output should be
the apaproximation to x(T). The code must do something to preserve
the overall order of accuracy of the method in case T' is not an integer
multiple of At. The code should be able to switch between the three
methods, forward Euler, second order Adams Bashforth, forth order four
state Runge Kutta, with a minimum of code editing. Hand in output for
each of the parts below showing that the code meets the specifications.

(a) The procedure should return an error flag or notify the calling routine
in some way if the number of time steps called for is negative or
impossibly large.

(b) For each of the three methods, verify that the coding is correct by
testing that it gets the right answer, z(.5) = 2, for the scalar equation
i=2?% z(0) = 1.

(¢) For each of the three methods and the test problem of part b, do a
convergence study to verify that the method achieves the theoretical
order of accuracy. For this to work, it is necessary that T should be
an integer multiple of At.

(d) Apply your code to problem (18) with initial data zo = (1,0)*. Re-
peat the convergence study with T" = 10.

6. Verify that the recurrence relation (39) is unstable.

(a) Let z be a complex number. Show that the sequence zj, = z* satisfies
(39) if and only if z satisfies 0 = p(z) = 23 + 222 — 32 + 3.

(b) Show that x; = 1 for all &k is a solution of the recurrence relation.
Conclude that z = 1 satisfies p(1) = 0. Verify that this is true.

(¢) Using polynomial division (or another method) to factor out the
known root z = 1 from p(z). That is, find a quadratic polynomial,
q(2), so that p(z) = (z — 1)q(2).

(d) Use the quadratic formula and a calculator to find the roots of ¢ as

z=F +,/% ~ —2.85, .351.

(e) Show that the general formula z, = az¥ + bz5 + cz% is a solution to
(39) if 21, 29, and 23 are three roots 21 = 1, 29 &~ —2.85, 23 ~ .351,
and, conversely, the general solution has this form. Hint: we can find
a, b, ¢ by solving a vanderMonde system (Section ??) using zg, x1,
and xs.

(f) Assume that |zg] < 1, |x1] < 1, and |z2| < 1, and that b is on the
order of double precision floating point roundoff (€,qcp) relative to
a and c. Show that for & > 80, x; is within €,,4cp of bz§. Conclude
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that for k£ > 80, the numerical solution has nothing in common with
the actual solution z(t).

7. Applying the implicit trapezoid rule (47) to the scalar model problem
(31) results in ugt1 = m(AAt)ug. Find the formula for m and show that
|m| < 1if Re(A\) <0, so that |ugt1| < |ug|. What does this say about the
applicibility of the trapezoid rule to stiff problems?

8. Exercise violating time step constraint.

9. Write an adaptive code in C/C++ for the initial value problem (1) (2)
using the method described in Section 4 and the four stage fourth order
Runge Kutta method. The procedure that does the solving should have
arguments describing the problem, as in Exercise 5, and also the local
truncation error level, e. Apply the method to compute the trajectory
of a comet. In nondimensionalized variables, the equations of motion are
given by the inverse square law:

() e ()

dt2 \ (r2 + T§)3/2 o
We always will suppose that the comet starts at ¢t = 0 with »; = 10,
ro = 0,71 = 0, and 7o = vg. If vg is not too large, the point r(t) traces
out an ellipse in the plane'®. The shape of the ellipse depends on vy. The
period, P(vg), is the first time for which r(P) = r(0) and 7(P) = 7(0).
The solution r(t) is periodic because it has a period.

(a) Verify the correctness of this code by comparing the results to those
from the fixed time step code from Exercise 5 with T' = 30 and
Vo = 2.

(b) Use this program, with a small modification to compute P(vg) in
the range .01 < vy < .5. You will need a criterion for telling when
the comet has completed one orbit since it will not happen that
r(P) = r(0) exactly. Make sure your code tests for and reports

failure'®.

(¢) Choose a value of vy for which the orbit is rather but not extremely
elliptical (width about ten times height). Choose a value of e for
which the solution is rather but not extremely accurate — the error is
small but shows up easily on a plot. If you set up your environment
correctly, it should be quick and easy to find suitable paramaters
by trial and error using Matlab graphics. Make a plot of a single
period with two curves on one graph. One should be a solid line
representing a highly accurate solution (so accurate that the error is

15Tsaac Newton formulated these equations and found the explicit solution. Many aspects
of planetary motion — elliptical orbits, sun at one focus, |7"|€ = const — had beed discovered
observationally by Johannes Keppler. Newton’s inverse square law theory fit Keppler’s data.
16This is not a drill.
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smaller than the line width — plotting accuracy), and the other being
the modestly accurate solution, plotted with a little “0” for each time
step. Comment on the distribution of the time step points.

(d) For the same parameters as part b, make a single plot of that contains
three curves, an accurate computation of 1 (t) as a function of ¢ (solid
line), a modestly accurate computation of 1 as a function of ¢ (“o”
for each time step), and At as a function of ¢. You will need to use a
different scale for At if for no other reason than that it has different
units. Matlab can put one scale in the left and a different scale on
the right. It may be necessary to plot At on a log scale if it varies
over too wide a range.

(e) Determine the number of adaptive time stages it takes to compute
P(.01) to .1% accuracy (error one part in a thousand) and how many
fixed At time step stages it takes to do the same. The counting will
be easier if you do it within the function f.

10. The vibrations of a two dimensional crystal lattice may be modelled in a
crude way using the differential equations!”

Fik = Tj—1k T Tjt1hk + k-1 + Tjkt1 — 47k - (50)

Here 7 (t) represents the displacement (in the vertical direction) of an
atom at the (j, k) location of a square crystal lattice of atoms. Each atom
is bonded to its four neighbors and is pulled toward them with a linear
force. A lattice of size L has 1 < j < L and 1 <k < L. Apply reflecting
boundary conditions along the four boundaries. For example, the equation
for r1 should use 79 = r1,5. This is easy to implement using a ghost
cell strategy. Create ghost cells along the boundary and copy appropriate
values from the actual cells to the ghost cells before each evaluation of f.
This allows you to use the formula (50) at every point in the lattice. Start
with initial data r;;(0) = 0 and 7;(0) = 0 for all j,k except 11 = 1.
Compute for L = 100 and T = 300. Use the fourth order Runge Kutta
method with a fixed time step At = .01. Write the solution to a file every
.5 time units then use Matlab to make a movie of the results, with a 2D
color plot of the solution in each frame. The movie should be a circular
wave moving out from the bottom left corner and bouncing off the top and
right boundaries. There should be some beautiful wave patterns inside the
circle that will be hard to see far beyond time ¢ = 100. Hand in a few
of your favorite stills from the movie. If you have a web site, post your
movie for others to enjoy.

17This is one of Einstein’s contributions to science.
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