
Principles of Scientific Computing

Approximating functions

Jonathan Goodman

last revised October 20, 2006

1

This chapter discusses two related problems. One is finding simple approx-
imate representations for known functions. The other is interpolation and ex-
trapolation, estimating unknown function values from known values at nearby
points. On one hand, interpolation of smooth functions gives accurate approx-
imations. On the other hand, we can interpolate and extrapolate using our
approximating functions.

Some useful interpolating functions are polynomials, splines, and trigono-
metric polynomials. Interpolation by low order polynomials is simple and ubiq-
uitous in scientific computing. Ideas from Chapters ?? and ?? will let us un-
derstand its accuracy. Some simple tricks for polynomial interpolation are the
Newton form of the interpolating polynomial and Horner’s rule for evaluating
polynomials.

Local polynomial interpolation gives different approximating functions in
different intervals. A spline interpolant is a single globally defined function that
has many of the approximation properties of local polynomial interpolation.
Computing the interpolating spline from n data points requires us to solve a
linear system of equations involving a symmetric banded matrix, so the work is
proportional to n.

The order of accuracy of polynomial or spline interpolation is p + 1, where
p is the degree of polynomials used. This suggests that we could get very accu-
rate approximations using high degree polynomials. Unfortunately, high degree
polynomial interpolation on uniformly spaced points leads to linear systems of
equations that are exponentially ill conditioned, κ ∼ ecp, where p is the degree
and κ is the condition number. The condition number grows moderately as
p → ∞ only if the interpolation points cluster at the ends of the interval in a
very specific way.

High accuracy interpolation on uniformly spaced points can by done using
trigonometric polynomial interpolation, also called Fourier interpolation. More
generally, Fourier analysis for functions defined at n uniformly spaced points
can be done using the discrete Fourier transform, or DFT. The fast Fourier
transform, or FFT, is an algorithm that computes the DFT of n values in
O(n log(n)) time. Besides trigonometric interpolation, the FFT gives highly
accurate solutions to certain linear partial differential equations and allows us
to compute large discrete convolutions, including the convolution that defines
the time lag covariance function for a time series.

1 Polynomial interpolation

Given points x0, . . . , xd and values f0, . . . , fd, there is a unique interpolating
polynomial of degree d,

p(x) = p0 + p1x + · · · + pdx
d , (1)

so that
p(xk) = fk for k = 0, 1, . . . , d. (2)

2

We give three proofs of this, each one illustrating a different aspect of polynomial
interpolation.

We distinguish between low order or local interpolation and high order or
global interpolation. In low order interpolation, we have a small number (at
least two and probably not much more than five) of nearby points and we seek
an interpolating polynomial that should be valid near these points. This leads
to approximations of order d + 1 for degree d interpolation. For example, local
linear interpolation (degree d = 1) is second order accurate. See Exercise ??.

1.1 Vandermonde theory

The most direct approach to interpolation uses the Vandermonde matrix. The
equations (22) and (2) form a set of linear equations that determine the d + 1
unknown coefficients, pj , from the d + 1 given function values, fk. The kth

equation is
p0 + xkp1 + x2

kp2 + · · · + xd
kpd = fk ,

which we write abstractly as
V p = f , (3)

where

V =




1 x0 . . . xd
0

1 x1 . . . xd
1

...
...

...
1 xd . . . xd

d


 , (4)

p = (p0, . . . , pd)
∗, and f = (f0, . . . , fd)

∗. The equations (3) have a unique
solution if and only if det(V) 6= 0. We show det(V) 6= 0 using the following
famous formula:

Theorem 1 Define D(x0, . . . , xd) = det(V) as in (4). Then

D(x0, . . . , xd) =
∏

j<k

(xk − xj) . (5)

The reader should verify directly that D(x0, x1, x2) = (x2−x0)(x1−x0)(x2−
x1). It is clear that D = 0 whenever xj = xk for some j 6= k because xj = xk

makes row j and row k equal to each other. The formula (5) says that D is a
product of factors coming from these facts.
Proof: The proof uses three basic properties of determinants. The first is that
the determinant does not change if we perform an elimination operation on rows
or columns. If we subtract a multiple of row j from row k or of column j from
column k, the determinant does not change. The second is that if row k or
column k has a common factor, we can pull that factor out of the determinant.
The third is that if the first column is (1, 0 . . . , 0)∗, then the determinant is the
determinant of the d × d matrix got by deleting the top row and first column.

3

We work by induction on the number of points. For d = 1 (5) is D(x0, x1) =
x1 − x0, which is easy to verify. The induction step is the formula

D(x0, . . . , xd) =

(
d∏

k=1

(xk − x0)

)
· D(x1, . . . , xd) . (6)

We use the easily checked formula

xk − yk = (x − y)(xk−1 + xk−2y + · · · + yk−1) . (7)

To compute the determinant of V in (4), we use Gauss elimination to set all but
the top entry of the first column of V to zero. This means that we replace row
j by row j minus row 1. Next we find common factors in the columns. Finally
we perform column operations to put the d × d matrix back into the form of a
vanderMonde matrix for x1, . . . , xd, which will prove (6).

Rather than giving the argument in general, we give it for d = 2 and d = 3.
The general case will be clear from this. For d = 2 we have

det




1 x0 x2
0

1 x1 x2
1

1 x2 x2
2


 = det




1 x0 x2
0

0 x1 − x0 x2
1 − x2

0

0 x2 − x0 x2
2 − x2

0




= det

(
x1 − x0 x2

1 − x2
0

x2 − x0 x2
2 − x2

0

)
.

The formula (7) with k = 2 gives x2
1 − x2

0 = (x1 − x0)(x1 + x0), so (x1 − x0) is
a common factor in the top row. Similarly, (x2 − x0) is a common factor of the
bottom row. Thus:

det

(
x1 − x0 x2

1 − x2
0

x2 − x0 x2
2 − x2

0

)
= det

(
x1 − x0 (x1 − x0)(x1 + x0)
x2 − x0 x2

2 − x2
0

)

= (x1 − x0) det

(
1 (x1 + x0)

x2 − x0 x2
2 − x2

0

)

= (x1 − x0)(x2 − x0) det

(
1 x1 + x0

1 x2 + x0

)
.

The final step is to subtract x0 times the first column from the second column,
which does not change the determinant:

det

(
1 x1 + x0

1 x2 + x0

)
= det

(
1 x1 + x0 − x0 ∗ 1
1 x2 + x0 − x0 ∗ 1

)

= det

(
1 x1

1 x2

)

= D(x1, x2) .

This proves (6) for d = 2.

4

For d = 3 there is one more step. If we subtract row 1 from row k for k > 1
and do the factoring using (7) for k = 2 and x = 3, we get

det




1 x0 x2
0 x3

0

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3


 =

(x1 − x0)(x2 − x0)(x3 − x0) det




1 x1 + x0 x2

1 + x1x0 + x2
0

1 x2 + x0 x2
2 + x2x0 + x2

0

1 x3 + x0 x2
3 + x3x0 + x2

0



 .

We complete the proof of (6) in this case by showing that

det




1 x1 + x0 x2
1 + x1x0 + x2

0

1 x2 + x0 x2
2 + x2x0 + x2

0

1 x3 + x0 x2
3 + x3x0 + x2

0


 = det




1 x1 x2
1

1 x2 x2
2

1 x3 x2
3


 .

For this we first subtract x0 times the first column from the second column,
then subtract x2

0 times the first column from the third column, then subtract
x0 times the second column from the third column. This completes the proof
of Theorem 1 and shows that one can find the coefficients of the interpolating
polynomial by solving a linear system of equations involving the vanderMonde
matrix.

1.2 Newton interpolation formula

The Newton interpolation formula is a simple and insightful way to express the
interpolating polynomial. It is based on repeated divided differences, done in
a way to expose the leading terms of polynomials. These are combined with a
specific basis for the vector space of polynomials of degree k so that in the end
the interpolation property is obvious. In some sense, the Newton interpolation
formula provides a formula for the inverse of the vanderMonde matrix.

We begin with the problem of estimating derivatives of f(x) using a number
of function values. Given nearby points, x1 and x0, we have

f ′ ≈ f(x1) − f(x0)

x1 − x0
.

We know that the divided difference is particularly close to the derivative at the
center of the interval, so we write

f ′

(
x1 + x0

2

)
≈ f(x1) − f(x0)

x1 − x0
, (8)

with an error that is O
(
|x1 − x0|2

)
. If we have three points that might not be

uniformly spaced, the second derivative estimate using (8) could be

f ′′ ≈ f ′
(

x2+x1

2

)
− f ′

(
x1+x0

2

)

x2 + x1

2
− x1 + x0

2

5

f ′′ ≈

f(x2) − f(x1)

x2 − x1
− f(x1) − f(x0)

x1 − x0
1
2 (x2 − x0)

. (9)

As we saw in Chapter ??, the approximation (9) is consistent (converges to the
exact answer as x2 → x, x1 → x, and x0 → x) if it is exact for quadratics,
f(x) = ax2 + bx+ c. Some algebra shows that both sides of (9) are equal to 2a.

The formula (9) suggests the right way to do repeated divided differences.
Suppose we have d + 1 points1 x0, . . . , xd, we define f [xk] = f(xk) (exchange
round parentheses for square brackets), and the first order divided difference is:

f [xk, xk+1] =
f [xk+1] − f [xk]

xk+1 − xk
.

More generally, the Newton divided difference of order k+1 is a divided difference
of divided differences of order k:

f [xj , · · · , xk+1] =
f [xj+1, · · · , xk+1] − f [xj , · · · , xk]

xk+1 − xj
. (10)

The denominator in (10) is the difference between the extremal x values, as (9)
suggests it should be. If instead of a function f(x) we just have values f0, . . . , fd,
we define

[fj, · · · , fk+1] =
[fj+1, · · · , fk+1] − [fj , · · · , fk]

xk+1 − xj
. (11)

It may be convenient to use the alternative notation

Dk(f) = f [x0, · · · , xk] .

If r(x) = rkxk+· · ·+r0 is a polynomial of degree k, we will see that Dkr = k!·rk.
We verified this already for k = 1 and k = 2.

The interpolation problem is to find a polynomial of degree d that satisfies
the interpolation conditions (2). The formula (1) expresses the interpolating
polynomial as a linear combination of pure monomials xk. Using the mono-
mials as a basis for the vector space of polynomials of degree d leads to the
vanderMonde matrix (4). Here we use a different basis, which might be called
the Newton monomials of degree k (although they strictly speaking are not
monomials), q0(x) = 1, q1(x) = x− x0, q2(x) = (x− x1)(x− x0), and generally,

qk(x) = (x − xk−1) · · · · · (x − x0) . (12)

It is easy to see that qk(x) is a polynomial of degree k in x with leading coefficient
equal to one:

qk(x) = xk + ak−1x
k−1 + · · · .

Since this also holds for qk−1, we may subtract to get:

qk(x) − ak−1qk−1(x) = xk + bk−2x
k−2 + · · · .

1The xk must be distinct but they need not be in order. Nevertheless, it helps the intuition
to think that x0 < x1 < · · · < xd.

6

Continuing in this way, we express xk in terms of Newton monomials:

xk = qk(x) − ak,k−1qk−1(x) − bk,k−2 − · · · . (13)

This shows that the qk(x) are linearly independent and span the same space as
the monomial basis.

The connection between repeated divided differences (10) and Newton mono-
mials (12) is

Dkqj = δkj . (14)

The intuition is that Dkf plays the role 1
k!∂

k
xf(0) and qj(x) plays the role of

xj . For k > j, ∂kxj = 0 because differentiation lowers the order of a monomial.
For k < j, ∂k

xxj = 0 when evaluated at x = 0 because monomials vanish when
x = 0. The remaining case is the interesting one, 1

k!∂
k
xxk = 1.

We verify (14) by induction on k. We suppose that (14) holds for all k < d
and all j and use that to prove it for k = d and all j, treating the cases j = d,
j < d, and j > d separately. The base case k = 1 explains the ideas. For j = 1
we have

D1q1(x) =
q1(x1) − q1(x0)

x1 − x0
=

(x1 − x0) − (x0 − x0)

x1 − x0
= 1 , (15)

as claimed. More generally, any first order divided difference of q1 is equal to
one,

q1[xk+1, xk] =
q1(xk+1) − q1(xk)

xk+1 − xk
= 1 ,

which implies that higher order divided differences of q1 are zero. For example,

q1[x2, x3, x4] =
q1[x3, x4] − q1[x2, x3]

x4 − x2
=

1 − 1

x4 − x2
= 0 .

This proves the base case, k = 1 and all j.
The induction step has the same three cases. For j > d it is clear that

Ddqj = qj [x0, . . . , xd] = 0 because qj(xk) = 0 for all the xk that are used in
qj [x0, . . . , xd]. The interesting case is qk[x0, . . . , xk] = 1. From (10) we have
that

qk[x0, . . . , xk] =
qk[x1, . . . , xk] − qk[x0, . . . , xk−1]

xk − x0
=

qk[x1, . . . , xk]

xk − x0
,

because qk[x0, . . . , xk−1] = 0 (it involves all zeros). The same reasoning gives
qk[x1, . . . , xk−1] = 0 and

qk[x1, . . . , xk] =
qk[x2, . . . , xk] − qk[x1, . . . , xk−1]

xk − x1
=

qk[x2, . . . , xk]

xk − x1
.

Combining these gives

qk[x0, . . . , xk] =
qk[x1, . . . , xk]

xk − x0
=

qk[x2, . . . , xk]

(xk − x0)(xk − x1)
,

7

and eventually, using the definition (12), to

qk[x0, . . . , xk] =
qk(xk)

(xk − x0) · · · · · (xk − xk−1)
=

(xk − x0) · · · · · (xk − xk−1)

(xk − x0) · · · · · (xk − xk−1)
= 1 ,

as claimed. Now, using (13) we see that

Dkxk = Dk

(
qk − ak,k−1qk−1 − · · ·

)
= Dkqk = 1 ,

for any collection of distinct points xj . This, in turn, implies that

qk[xm+k, . . . , xm] = 1 .

which, as in (15), implies that Dk+1qk = 0. This completes the induction step.
The formula (14) allows us to verify the Newton interpolation formula, which

states that

p(x) =

d∑

k=0

[f0, . . . , fk]qk(x) , (16)

satisfies the interpolation conditions (2). We see that p(x0) = f0 because each
term on the right k = 0 vanishes when x = x0. The formula (14) also implies
that D1p = D1f . This involves the values p(x1) and p(x0). Since we already
know p(x0) is correct, this implies that p(x1) also is correct. Continuing in this
way verifies all the interpolation conditions.

1.3 Lagrange interpolation formula

The Lagrange approach to polynomial interpolation is simpler mathematically
but less useful than the others. For each k, define the polynomial2 of degree d

lk(x) =

∏
j 6=k (x − xj)∏

j 6=k (xk − xj)
. (17)

For example, for d = 2, x0 = 0, x1 = 2, x2 = 3 we have

l0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
=

(x − 2)(x − 3)

(−2)(−3)
=

1

6

(
x2 − 5x + 6

)

l1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
=

(x − 0)(x − 3)

(1)(−1)
= x2 − 3x

l2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
=

(x − 0)(x − 2)

(3)(1)
=

1

3

(
x2 − 2x

)
,

If j = k, the numerator and denominator in (17) are equal. If j 6= k, then
l(k(xj) = 0 because (xj − xj) = 0 is one of the factors in the numerator.
Therefore

lk(xj) = δjk =

{
1 if j = k
0 if j 6= k

(18)

2We do not call these Lagrange polynomials because that term means something else.

8

The Lagrange interpolation formula is

p(x) =
d∑

k=0

fklk(x) . (19)

The right side is a polynomial of degree d. This satisfies the interpolation
conditions (2) because of (18).

2 Discrete Fourier transform

The Fourier transform is one of the most powerful methods of applied mathe-
matics. Its finite dimensional anologue, the discrete Fourier transform, or DFT,
is just as useful in scientific computing. The DFT allows direct algebraic solu-
tion of certain differential and integral equations. It is the basis of computations
with time series data and for digital signal processing and control. It leads to
computational methods that have an infinite order of accuracy (which is not the
same as being exact).

The drawback of DFT based methods is their geometric inflexibility. They
can be hard to apply to data that are not sampled at uniformly spaced points.
The multidimensional DFT is essentially a product of one dimensional DFTs.
Therefore is it hard to apply DFT methods to problems in more than one
dimension unless the computational domain has a simple shape. Even in one
dimension, applying the DFT depends on boundary conditions.

2.1 Fourier modes

The simplest Fourier analysis is for periodic functions of one variable. We say
f(x) is periodic with period p if f(x + p) = f(x) for all x. If α is an integer,
then the Fourier mode

wα(x) = e2πiαx/p (20)

is such a periodic function. Fourier analysis starts with the fact that Fourier
modes form a basis for the vector space of periodic functions. That means that
if f has period p, then there are Fourier coefficients, f̂α, so that

f(x) =

∞∑

α=−∞

f̂αe2πiαx/p . (21)

More precisely, let Vp be the vector space of complex valued periodic func-
tions so that

‖f‖2
L2 =

∫ p

0

|f(x)|2 dx < ∞ .

This vector space has an inner product that has the properties discussed in
Section ??. The definition is

〈f, g〉 =

∫ p

0

f(x)g(x)dx . (22)

9

Clearly, ‖f‖2
L2 = 〈f, f〉 > 0 unless f ≡ 0. The inner product is linear in the g

variable:
〈f, ag1 + bg2〉 = a〈f, g1〉 + b〈f, g2〉 ,

and antilinear in the f variable:

〈af1 + bf2, g〉 = a〈f1, g〉 + b〈f2, g〉 .

Functions f and g are orthogonal if 〈f, g〉 = 0. A set of functions is orthogonal
if any two of them are orthogonal and none of them is zero. The Fourier modes
(20) have this property: if α 6= β are two integers, then 〈wα, wβ〉 = 0 (check
this).

Any orthogonal system of functions is linearly independent. Linear indepen-
dence means that if

f(x) =
∑

α

f̂αwα(x) =

∞∑

α=−∞

f̂αe2πiαx/p , (23)

then the f̂α are uniquely determined. For orthogonal functions, we show this by
taking the inner product of wβ with f and use the linearity of the inner product
to get

〈wβ , f〉 =
∑

α

f̂α〈wβ , wα〉 = f̂β〈wβ , wβ〉 ,

so

f̂β =
〈wβ , f〉
‖wβ‖2 . (24)

This formula shows that the coefficients are uniquely determined. Written more
explicitly for the Fourier modes, (24) is

f̂α =
1

p

∫ p

x=0

e−2πiαx/pf(x)dx . (25)

An orthogonal family, wα, is complete if any f has a representation in terms
of them as a linear combination (23). An orthogonal family need not be com-
plete. Fourier conjectured that the Fourier modes (20) are complete, but this
was first proven several decades later.

Much of the usefulness of Fourier series comes from the relationship between
the series for f and for derivatives f ′, f ′′, etc. When we differentiate (23) with
respect to x and differentiate under the summation on the right side, we get

f ′(x) =
2πi

p

∑

α

αf̂αe2πiαx/p .

This shows that the α Fourier coefficient of f ′ is

f̂ ′
α =

2πiα

p
f̂α . (26)

10

Formulas like these allow us to express the solutions to certain ordinary and
partial differential equations in terms of Fourier series. See Exercise 4 for one
example.

We will see that the differentiation formula (26) also contains important
information about the Fourier coefficients of smooth functions, that they are
very small for large α. This implies that approximations

f(x) ≈
∑

|α|≤R

f̂αwα(x)

are very accurate if f is smooth. It also implies that the DFT coefficients (see

Section 2.2) are very accurate approximations of f̂α. Both of these make DFT
based computational methods very attractive (when they apply) for application
to problems with smooth solutions.

We start to see this decay by rewriting (26) as

f̂α =
pf̂ ′

α

2πi
· 1

α
. (27)

The integral formula

f̂ ′
α =

1

p

∫ p

0

wα(x)f ′(x)dx

shows that the Fourier coefficients f̂ ′
α are bounded if f ′ is bounded, since (for

some real θ) |wα(x)| =
∣∣eiθ
∣∣ = 1. This, and (27) shows that

∣∣∣f̂α

∣∣∣ ≤ C · 1

|α| .

We can go further by applying (27) to f ′ and f ′′ to get

f̂α =
p2f̂ ′′

α

−4π2
· 1

α2
,

so that if f ′′ is bounded, then

∣∣∣f̂α

∣∣∣ ≤ C · 1

|α2| ,

which is faster decay (1/α2 ≪ 1/α for large α). Continuing in this way, we can
see that if f has N bounded derivatives then

∣∣∣f̂α

∣∣∣ ≤ CN · 1

|αN | . (28)

This shows, as we said, that the Fourier coefficients of smooth functions decay
rapidly.

It is helpful in real applications to use real Fourier modes, particularly when
f(x) is real. The real modes are sines and cosines:

uα(x) = cos(2παx/p) , vα(x) = sin(2παx/p) . (29)

11

The uα are defined for α ≥ 0 and the vα for α ≥ 1. The special value α = 0
corresponds to u0(x) = 1 (and v0(x) = 0). Exercise 3 shows that the uα for
α = 0, 1, . . . and vα for α = 1, 2, . . . form an orthogonal family. The real Fourier
series representation expresses f as a superposition of these functions:

f(x) =
∞∑

α=0

aα cos(2παx/p) +
∞∑

α=1

bα sin(2παx/p) . (30)

The reasoning that led to (25), and the normalization formulas of Exercise ??

below, (41), gives

aα =
2

p

∫ p

0

cos(2παx/p)f(x)dx (α ≥ 1),

bα =
2

p

∫ p

0

sin(2παx/p)f(x)dx (α ≥ 1),

a0 =
1

p

∫ p

0

f(x)dx .





(31)

This real Fourier (30) is basically the same as the complex Fourier series

(23) when f(x) is real. If f is real, then (25) shows that3 f̂−α = f̂α. This
determines the α < 0 Fourier coefficients from the α ≥ 0 coefficients. If α > 0
and f̂α = gα + ihα (gα and hα being real and imaginary parts), then (using
eiθ = cos(θ) + i sin(θ)), we have

f̂αe2πiαx/p + f̂−αe−2πiαx/p

= (gα + ihα)
(
cos(·) + i sin(·)) + (gα − ihα)

(
cos(·) − i sin(·)

)

= 2gα cos(·) − 2hα sin(·) .

Moreover, when f is real,

gα =
1

p
Re

[∫ p

0

e−2πiαx/pf(x)dx

]

=
1

p

∫ p

0

cos(2πiαx/p)f(x)dx

=
1

2
aα .

Similarly, hα = −1
2 bα. This shows that the real Fourier series relations (23)

and (25) directly follow from the complex Fourier series relations (30) and (31)
without using Exercise 3.

3This also shows that the full Fourier series sum over positive and negative α is somewhat
redundant for real f . This is another motivation for using the version with cosines and sines.

12

2.2 The DFT

The DFT is a discrete anologue of Fourier analysis. The vector space Vp is
replaced by sequences with period n: fj+n = fj. A periodic sequence is de-
termined by the n entries4: f = (f0, . . . , fn−1)

∗, and the vector space of such
sequences is Cn. Sampling a periodic function of x is one way to create an ele-
ment of Cn. Choose ∆x = p/n, take sample points, xj = j∆x, then the samples
are fj = f(xj). If the continuous f has period p, then the discrete sampled f
has period n, because fj+n = f(xj+n), and xj+n = (j + n)∆x, and n∆x = p.

The DFT modes come from sampling the continuous Fourier modes (20) in
this way. That is

wα,j = wα(xj) = exp(2πiαxj/p) .

Since xj = jp/n, this gives

wα,j = exp(2πiαj/n) = wαj , (32)

where w is a primitive root of unity5

w = e2πi/n . (33)

Aliasing is a difference between continuous and discrete Fourier analysis. If
β = α + n then the samplings of wβ and wα are the same, wβ(xj) = wα(xj) for
all j, even though wβ and wα are different functions of x. Figure 1 illustrates
this with sine functions instead of complex exponentials. Aliasing implies that
the discrete sampled vectors wα ∈ Cn with components given by (32) are not
all different. In fact, the n vectors wα for 0 ≤ α < n are distinct. After that
they repeat: wα+n = wα (this being an equality between two vectors in Cn).

These n discrete sampled modes form a basis, the DFT basis, for Cn. If f
and g are two elements of Cn, the discrete inner product is

〈f, g〉 =

n−1∑

j=0

f jgj .

This is the usual inner product on Cn and leads to the usual l2 norm 〈f, f〉 =

‖f‖2
l2 . We show that the discrete modes form an orthogonal family, but only as

far as is allowed by aliasing. That is, if 0 ≤ α < n and 0 ≤ β < n, and α 6= β,
then 〈wα, wβ〉 = 0.

Recall that for any complex number, z, S(z) =
∑n−1

j=0 zj has S = n if z = 1
and S = (zn − 1)/(z − 1) if z 6= 1. Also,

wα,j = e2πiαj/n = e−2πiαj/n = w−αj ,

4The ∗ in (f0, . . . , fn−1)∗ indicates that we think of f as a column vector in Cn.
5Unity means the number 1. An nth root of x is a y with yn = x. An nth root of unity is

primitive if wn = 1 but wk 6= 1 for 0 ≤ k ≤ n.

13

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

w

7 point sampling of sin(2x) and sin(9x)

Figure 1: An illustration of aliasing with n = 7 sampling points and period
p = 2π, with modes α = 2 and β = α + n = 9. The continuous curves are
sin(2x) and sin(9x). The circles are these curves sampled at the sample points
xj = 2πj/n. The sampled values are identical even though the functions sin(2x)
and sin(9x) are not.

14

so we can calculate

〈wα, wβ〉 =

n−1∑

j=0

w−αjwβj

=

n−1∑

j=0

w(β−α)j

=
n−1∑

j=0

(
wβ−α

)j

Under our assumptions (α 6= β but 0 ≤ α < n, 0 ≤ β < n) we have 0 <
|β − α| < n, and z = wβ−α 6= 1 (using the fact that w is a primitive root of
unity). This gives

〈wα, wβ〉 =
wn(β−α) − 1

wβ−α − 1
.

Also,

wn(β−α) =
(
wn
)β−α

= 1β−α = 1 ,

because w is an nth root of unity. This shows 〈wα, wβ〉 = 0. We also can

calculate that ‖wα‖2
=
∑n

j=1 |wα,j |2 = n.
Since the n vectors wα for 0 ≤ α < n are linearly independent, they form a

basis of Cn. That is, any f ∈ Cn may be written as a linear combination of the
wα:

f =

n−1∑

α=0

f̂αwα .

By the arguments we gave for Fourier series above, the DFT coefficients are

f̂α =
1

n
〈wα, f〉 .

Expressed explicitly in terms of sums, these relations are

f̂α =
1

n

n−1∑

j=0

w−αjfj , (34)

and

fj =

n−1∑

α=0

f̂αwαj . (35)

These are the (forward) DFT and inverse DFT respectively. Either formula

implies the other. If we start with the fj and calculate the f̂α using (34), then

we can use (35) to recover the fj from the f̂α, and the other way around. These
formulas are more similar to each other than are the corresponding formulas

15

(25) and (21). Both are sums rather than one being a sum and the other an
integral.

There are many other slightly different definitions of the DFT relations.
Some people define the discrete Fourier coefficients using a variant of (34), such
as

f̂α =
n−1∑

j=0

wαjfj .

This particular version changes (35) to

fj =
1

n

n−1∑

α=0

w−αj f̂α .

Still another way to express these relations is to use the DFT matrix, W , which
is an orthogonal matrix whose (α, j) entry is

wα,j =
1√
n

w−αj .

The adjoint of W has entries

w∗
j,α = wα,j =

1√
n

wαj .

The DFT relations are equivalent to W ∗W = I. In vector notation, this f̂ = Wf
transform differs from (34) by a factor of

√
n:

f̂α =
1√
n

n−1∑

j=0

w−αjfj .

It has the advantage of making the direct and inverse DFT as similar as possible,
with a factor 1/

√
n in both.

As for continuous Fourier series, there is a real discrete cosine and sine
transform for real f . The complex coefficients f̂α, determine the real coefficients
aα and bα as before. Aliasing is more complicated for the discrete sine and cosine
transform, and depends on whether n is even or odd. The cosine and sine sums
corresponding to (30) run from α = 0 or α = 1 roughly to α = n/2.

We can estimate the Fourier coefficients of a continuous function by taking
the DFT of its sampled values. We call the vector of samples f (n). It has

components f
(n)
j = f(xj), where xj = j∆x and ∆x = p/n. The DFT coefficients

f̂
(n)
α defined by (34) are rectangle rule approximations to the Fourier series

coefficients (25). This follows from (32) and 1
p∆x = 1

n , since αj/n = αxj/p and

f̂ (n)
α =

1

n

n−1∑

j=0

w−αjf
(n)
j (36)

=
1

p
∆x

n−1∑

j=0

e−2πiαxj/nf(xj) .

16

There is a simple aliasing formula for the Fourier coefficients of f (n) in
terms of those of f . It depends on aliasing when we put the continuous Fourier
representation (25) into the discrete Fourier coefficient formula (37). If we
rewrite (25) with β instead of α as the summation index, substitute into (37),
and change the order of summation, we find

f̂ (n)
α =

∞∑

β=−∞

f̂β
∆x

p

n−1∑

j=0

exp [2πi (β − α)xj/n] .

We have shown that the inner sum is equal to zero unless mode β aliases to mode
α on the grid, which means β = α + kn for some integer k. We also showed
that if mode β does alias to mode α on the grid, then each of the summands is
equal to one. Since ∆x/p = 1/n, this implies that

f̂ (n)
α =

∞∑

k=−∞

f̂α+kn . (37)

This shows that the discrete Fourier coefficient is equal to the continuous Fourier
coefficient (the k = 0 term on the right) plus all the coefficients that alias to it
(the terms k 6= 0).

You might worry that the continuous function has Fourier coefficients with
both positive and negative α while the DFT computes coefficients for α =
0, 1, . . . , n − 1. The answer to this is aliasing. We find approximations to the

negative α Fourier coefficients using f̂
(n)
−α = f̂

(n)
n−α. It may be more helpful to

think of the DFT coefficients as being defined for α ≈ −n
2 to α ≈ n

2 (the
exact range depending on whether n is even or odd) rather than from α = 0 to

α = n − 1. The aliasing formula shows that if f is smooth, then f̂
(n)
α is a very

good approximation to f̂α.

2.3 FFT algorithm

It takes n2 multiplies to carry out all the sums in (34) directly (n terms in
each of n sums). The Fast Fourier Transform, or FFT, is an algorithm that

calculates the n components of f̂ from the n components of f using O(n log(n))
operations, which is much less for large n.

The idea behind FFT algorithms is clearest when n = 2m. A single DFT
of size n = 2m is reduced to two DFT calculations of size m = n/2 followed
by O(n) work. If m = 2r, this process can be continued to reduct the two size
m DFT operations to four size r DFT operations followed by 2 · O(m) = O(n)
operations. If n = 2p, this process can be continued p times, where we arrive at
2p = n trivial DFT calculations of size one each. The total work for the p levels
is p · O(n) = O(n log2(n)).

There is a variety of related methods to handle cases where n is not a power
of 2, and the O(n log(n)) work count holds for all n. The algorithm is simpler
and faster for n = 2p. For example, an FFT with n = 220 = 1, 048, 576 should
be significantly faster than with n = 1, 048, 573, which is a prime number.

17

Let Wn×n be the complex n× n matrix6 whose (α, j) entry is wα,j = w−αj ,
where w is a primitive nth root of unity. The DFT (34), but for the factor of 1

n ,

is the matrix product f̃ = Wn×nf . If n = 2m, then w2 is a primitive mth root
of unity and an m × m DFT involves the matrix product g̃ = Wm×mg, where
the (α, k) entry of Wm×m is (w2)−αk = w−2αk. The reduction splits f ∈ Cn

into g ∈ Cm and h ∈ Cm, then computes g̃ = Wm×mg and h̃ = Wm×mh, then

combines g̃ and h̃ to form f̃ .
The elements of f̃ are given by the sums

f̃α =

n−1∑

j=0

w−αjfj .

We split these into even and odd parts, with j = 2k and j = 2k+1 respectively.
Both of these have k ranging from 0 to n

2 − 1 = m − 1. For these sums,
−αj = −α(2k) = −2αk (even), and −αj = −α(2k + 1) = −2αk − α (odd)
respectively. Thus

f̃α =

m−1∑

k=0

w−2αkf2k + w−α
m−1∑

k=0

w−2αkf2k+1 . (38)

Now define g ∈ Cm and h ∈ Cm to have the even and odd components of f
respectively:

gk = f2k , hk = f2k+1 .

The m × m operations g̃ = Wm×mg and h̃ = Wm×mh, written out, are

g̃α =

n−1∑

k=0

(
w2
)−αk

gk ,

and

h̃α =

n−1∑

k=0

(
w2
)−αk

hk .

Then (38) may be written

f̃α = g̃α + w−αh̃α . (39)

This is the last step, which reassembles f̃ from g̃ and h̃. We must apply (39)

for n values of α ranging from α = 0 to α = n − 1. The computed g̃ and h̃
have period m (g̃α+m = g̃α, etc.), but the factor w−α in front of h̃ makes f̃ have
period n = 2m instead.

To summarize, an order n FFT requires first n copying to form g and h, then
two order n/2 FFT operations, then order n copying, adding, and multiplying.
Of course, the order n/2 FFT operations themselves boil down to copying and
simple arithmetic. As explained in Section ??, the copying and memory access-
ing can take more computer time than the arithmetic. High performance FFT
software needs to be chip specific to take full advantage of cache.

6This definition of W differs from that of Section 2 by a factor of
√

n.

18

2.4 Trigonometric interpolation

Interpolating f(x) at points xj , j = 1, . . . , n, means finding another function
F (x) so that F (xj) = f(xj) for j = 1, . . . , n. In polynomial interpolation,
F (x) is a polynomial of degree n − 1. In trigonometric interpolation, F (x) is a
trigonometric polynomial with n terms. Because we are interested in values of
F (x) off the grid, do should not take advantage of aliasing to simplify notation.
Instead, we let Zn be a set of integers as symmetric about α = 0 as possible.
This depends on whether n is even or odd

Zn =

{
{−m,−m + 1, . . . , m} if n = 2m + 1 (i.e. n is odd)
{−m + 1, . . . , m} if n = 2m (i.e. n is even)

(40)

With this notation, an n term trigonometric polynomial may be written

F (x) =
∑

α∈Zn

cαe2πiαx/p .

The DFT provides coefficients cα of the trigonometric interpolating polynomial
at n uniformly spaced points.

The high accuracy of DFT based methods comes from the fact that trigono-
metric polynomials are very efficient approximations for smooth periodic func-
tions. This, in turn, follows from the rapid decay of Fourier coefficients of
smooth periodic functions. Suppose, for example, that f(x) is a periodic func-
tion that has N bounded derivatives. Let be the n term trigonometric polyno-
mial consisting of n terms of the Fourier sum:

F (n)(x) =
∑

α∈Zn

f̂αe2πiαx/p .

Note that for large m,

∑

α≥m

1

αN
≈
∫ ∞

α=m

1

αN
dα =

1

N − 1

1

αN−1
.

The rapid decay inequality (28) gives a simple error bound

∣∣∣f(x) − F (n)(x)
∣∣∣ =

∣∣∣∣∣∣

∑

α/∈Zn

f̂αe2πiαx/p

∣∣∣∣∣∣

≤ C
∑

α≥n/2

1

αN
+ C

∑

α≤−n/2

1

|α|N

≤ C · 1

nN−1

Thus, the smoother f is, the more accurate is the partial Fourier sum approxi-
mation.

19

3 Software

Performance tools.

4 References and Resources

The classical books on numerical analysis (Dahlquist and Björck, Isaacson and
Keller, etc.) discuss the various facts and forms of polynomial interpolation.
There are many good books on Fourier analysis. One of my favorites is by
Harry Dym and my colleague Henry McKean7 I learned the aliasing formula
(37) from a paper by Heinz Kreiss and Joseph Oliger.

5 Exercises

1. Verify that both sides of (9) are equal to 2a when f(x) = ax2 + bx + c.

2. One way to estimate the derivative or integral from function values is to
differentiate or integrate the interpolating polynomial.

3. Show that the real Fourier modes (29) form an orthogonal family. This
means that

(a) 〈uα, uβ〉 = 0 if α 6= β.

(b) 〈vα, vβ〉 = 0 if α 6= β.

(c) 〈uα, vβ〉 = 0 for any α and β.

In (a), α or β may be zero. In (b), α and β start with one. In (c), α starts
with zero and β starts with one. It is easy to verify these relations using
complex exponentials and the formula eiθ = cos(θ) + i sin(θ). For exam-
ple, we can write cos(θ) = 1

2

(
eiθ + e−iθ

)
, so that uα = 1

2 (wα + w−α).
Therefore

〈uα, uβ〉 =
1

4

(
〈wα, wβ〉 + 〈w−α, wβ〉 + 〈wα, w−β〉 + 〈w−α, w−β〉

)
.

You can check that if α ≥ 0 and β ≥ 0 and α 6= β, then all four terms
on the right side are zero because the wα are an orthogonal family. Also
check this way that

‖uα‖2
L2 = 〈uα, uα〉 = ‖vα‖2

L2 =
p

2
, (41)

if α ≥ 1, and ‖u0‖2
L2 = p.

4. We wish to use Fourier series to solve the boundary value problem from
??.??.

7He pronounces McKean as one would Senator McCain.

20

(a) Show that the solution to (??) and (??) can be written as a Fourier
sine series

u(x) =
n−1∑

α=1

cα sin(παx) . (42)

One way to do this is to define new functions also called u and f ,
that extend the given ones in a special way to satisfy the boundary
conditions. For 1 ≤ x ≤ 2, we define f(x) = −f(x− 1). This defines
f in the interval [0, 2] in a way that makes it antisymmetric about
x = 1. Next if x /∈ [0, 2] there is a k so that x − 2k ∈ [0, 2]. Define
f(x) = f(x − 2k) in that case. This makes f a periodic function
with period p = 2 that is antisymmetric about any of the integer
points x = 0, x = 1, etc. Draw a picture to make this two step
extension clear. If we express this extended f as a real cosine and
sine series, the coefficients of all the cosine terms are zero (why?), so
f(x) =

∑
α>0 bα sin(παx). (Why π instead of 2π?) Now determine

the cα in terms of the bα so that u satisfies (??). Use the sine series
for u to show that u = 0 for x = 0 and x = 1.

(b) Write a program in Matlab that uses the Matlab fft function to
calculate the discrete sine coefficients bα for a sampled function f (n).
The simplest way to program this is to extend f to the interval [0, 2]
as described, sample this extended f at 2n+1 uniformly spaced points
in the interval [0, 2], compute the complex DFT of these samples, then
extract the sine coefficients as described in Section 2.1.

(c) Write a Matlab program that takes the bα and computes f̃(x) =∑n−1
α=1 bα sin(παx) for an arbitrary x value. On one graph, make

a plot of f(x) and f̃(x) for x ∈ [0, 1]. On another plot the error

f(x) − f̃(x). Check that the error is zero at the sampling points, as

it should be. For plotting, you will have to evaluate f(x) and f̃(x)
at many more than the sampling points. Do this for n = 5, 20, 100
and f(x) = x2 and f(x) = sin(3 sin(x)). Comment on the accuracy
in the two cases.

(d) Use the relation between bα and cα to calculate the solution to (??)
and (??) for the two functions f in part (c). Comment on the differ-
ence in accuracy.

(e) Show that the eigenvectors of the matrix A in Exercise ??.?? are
discrete sine modes. Use this to describe an algorithm to express any
vector, F , in terms as a linear combination of eigenvectors of A. This
is more or less what part (a) does, only stated in a different way.

(f) Use part (e) to develop a fast algorithm (i.e. as fast as the FFT rather
than the direct method) to solve Au = F . Write a Matlab code to
do this. Compare the accuracy of the second order method from
Exercise ??.?? to the DFT based algorithm of part (c).

21

