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Section 2, Basic statistics and econometrics

The mean variance analysis of Section 1 assumes that the investor knows
1 and Y. This Section discusses how one might estimate them from market
data. We think of 4 and ¥ as parameters in a model of market returns. Ab-
stract and general statistical discussions usually use 6 to represent one or several
model parameters to be estimated from data. We will look at ways to estimate
parameters, and the uncertainties in parameter estimates.

These notes have a long discussion of Gaussian random variables and the
distributions of ¢ and y? random variables. This may not be discussed explicitly
in class, and is background for the reader.

1 Statistical parameter estimation

We begin the discussion of statistics with material that is naive by modern
standards. As in Section 1, this provides a simple context for some of the fun-
damental ideas of statistics. Many modern statistical methods are descendants
of those presented here.

Let f(x,6) be a probability density as a function of x that depends on a
parameter (or collection of parameters) 6. Suppose we have n independent
samples of the population, f(-,60). That means that the X} are independent
random variables each with the probability density f(-,6). The goal of param-
eter estimation is to estimate 6 using the samples Xj;. The parameter estimate
is some function of the data, which is written

-~

0 ~ 0, = 0,(X1,...,X,) . (1)

A statistic is a function of the data. Thus, the estimate of 6 is a statistic. Some
statistics, sample means or quantiles, are simple functions of the data. Others
are complicated and hard to compute.

For example, suppose f = M (u,1). That is, the samples come from a normal
with unknown mean but variance o2 = 1. If we use the sample mean to estimate
the true mean, the estimator is

A(X1,.. X,) = i(Z)@) : (2)
k=1

The notation simplifies if we refer to the whole dataset, X = (X1,...,Xn)
simply as “the data”, or even “the sample”. Then a general estimator of 0 is
0, (X).



One measure of the accuracy of a statistic, or a statistical estimate, is its

e E {(o—é(x‘)ﬂ . 3)

As was mentioned in Section 1, it may be more important to measure the error
of a statistical estimate by the consequences of the error in our application. For
example, there may be no cost for an error less than € and a large cost otherwise.
Then the appropriate measure of accuracy is

rHGfg‘ > e} .

1.1 Frequentist and Bayesian statistics

There are two major “schools” of statistical estimation. The frequentist school
(sometimes called Fisherian, after Fisher) thinks of # as a fixed but unknown
parameter. In particular, 6 is not random. Frequentists do not use a probability
distribution to model their uncertainty over the value of §. The mean square
error (3) is considered to be a function of 6. A wuniformly best estimator in the
least squares sense is a 5( Z) that minimizes (3) no matter what  happens to be.
An annoying paradox of frequentist statistics is that this cannot exist, because
the ignorant estimator 0= 0y for all X will have mean square error equal to
zero if 6 happens to be equal to 6. Most discussions of statistics (including
those here) are frequentist unless they explicitly state otherwise.

The Bayesian school (after Bayes) models 6 itself as a random variable. In
Bayesian terminology, the probability density of 6 is the prior, called f(6). The
density for X given 6, is written! f(z | 6). This is the same as the function
called f(z,0) before. The notation here indicates conditional probability, which
is the Bayesian understanding of what it is. A Bayesian ezperiment is to first
choose 0 ~ f(0), then choose n independent samples of X from the conditional
density. The resulting joint density of X and 6 is given by Bayes’ rule

F(&,0) = f60) [] fxxl6).
k=1

The central object in Bayesian statistics is the posterior density. This is the
probability density for 8 conditional on the observed data:

= = f(6 and X)
»(01X) = f(O|X) = ——=—, 4
Hp01X) = f(O]X) ) (4)

where f(&) is the marginal density

f(&) = / F(Z,0)df = / (H f(xk9)> £(0)do . (5)
k=1

IThey use f for all probability densities. Different densities are distinguished by the names
of their arguments. Thus, f(0) is the density of 0, f(z) is the density of z, etc. The functions
are both called f, but they are not the same. This is something like operator overloading in
C++.




General Bayesian statistics (4) and (5) would be impractical without modern
Monte Carlo sampling methods.

One advantage of Bayesian statistics over frequentist statistics is that Bayesians
have a mechanism for putting in prior information that they might have. For
example, in the problem of estimating the expected return on a stock, we might
have a range of returns of stocks of similar companies. Another advantage of the
Bayesian point of view is that the output is not a single number 8 (called a point
estimate in this context), but the whole posterior distribution. That is, we get
the posterior uncertainty in 6 along with the posterior mean. Finally, sometimes
a prior distribution on 6 serves only to make the estimate robust against outliers
(wild data points) in the data. This is particularly useful in cases where 0 is
more complex than just a few numbers and we want to constrain its qualitative
behavior.

1.2 Maximum likelihood, one parameter

We stay in the frequentist world for a while. Suppose we have a dataset X and
a formula f(x,0) and that we want to estimate 6. For now, suppose that 6
is a single parameter. The multi-parameter version is below. The probability
density of the dataset is (because the samples are independent)

F(%,0) = F(x1,...,2,,0) = Hf(xk,ﬁ).
k=1

The likelihood function is this probability density as a function of € given the
dataset:

L(#) = F(X,0) = [] f(Xx0). (6)

k=1

The mazimum likelihood estimator of @ is?
§ = arg max, L(0) . (7)

The notation “arg max” means to take the argument that maximizes the func-
tion. That is, choose 0 so that maxg L(#) = L(0). Of course, 6 depends X
because L depends on X.

The maximum likelihood estimator (7) is a heuristic. It does not represent
the most likely value of §. For one thing, 8 is not random and has only one value
(though we do not know this value). Furthermore, the function L(6) is not a
probability density as a function of 6. It is positive, but [ L(#)df # 1 except in
accidental coincidental cases. The term “likelihood” is supposed to sound like
“probability” but not actually be probability. What maximum likelihood does
is find the parameter value that maximizes the probability density for the data
we have.

2We persist in saying the maximum likelihood estimate even though the maximizer may
not be unique or even exist.



Maximum likelihood estimation has important advantages. It is a simple
general recipe that applies in a wide range of problems. It also has theoretical
properties of being, in very general circumstances, a consistent estimator that
is asymptotically optimal among approximately unbiased estimators in the least
squares sense (3).

Here are the definitions. The bias of an estimator is (writing § for 8, when
the value of n is not important)

bias = E[@] — 9. (8)

The variance is simply the variance of 0 as a random variable. Tt is easy to
check the error decomposition

~ 2 ~
E{(Q&) } = bias? +Var[9} . 9)
Let gn = é\n(xl, ..., Zy) be a family of estimators. The family is consistent if,
for any € > 0,
PrHé\n—H‘Ze]HO as n — o00. (10)

Informally, we say that 5,, is consistent if é\n — 0 as n — oo. In fact, (10) is
the definition of convergence in probability. If an estimator is consistent, the
usual reason is that bias [9"] — 0 and var [é\n} — 0 as n — co. Though neither
condition is technically necessary for (10), there are no consistent estimators
used in practice that do not have vanishing bias and variance as n — oc.

In the decomposition (9), the bias is usually much smaller than the vari-
ance (which often is somewhat improperly called statistical error). Maximum
likelihood estimators, for example, have, for large n,

Gy

bias [@L] R (11)
and
var [@L} R~ % (12)

Thus, the bias contributes O1/n?) to the right side of (9) while the variance
contributes O(1/n). (We will see later a trick called shrinkage that lowers mean
square error by decreasing the variance at the expense of more bias.) Maximum
likelihood is asymptotically optimal in the mean square sense that among all
estimators that satisfy (11) and (12), maximum likelihood has the smallest C,
— the smallest variance and therefore the smallest mean square estimation error.

1.3 Maximum likelihood for univariate normals
The univeriate normal density is

femo) = N(p,o?)(z) = @%H/ : (13)




Suppose, at first, that we have n independent samples of f and that we want to
estimate p with o being known (admittedly an unlikely scenario). The maximum
likelihood estimate comes from maximizing the likelihood function (6) over .
It is convenient to use the log of the likelihood function (see (13))

n

) = (L) = — YW (X mo) = o g > (Xe—n)? + C,
k=1

k=1

where C' is independent of p and the Xj;. Maximizing L is the same as max-
imizing [ = In(L). In the present case, maximizing [ over u is the same as
minimizing the sum of squares

n

SS = > (Xk—p)?. (14)

k=1

A simple calculation (reader: do it) shows that the minimizer is the sample
mean (42).

Maximum likelihood estimation with Gaussian models often leads to least
squares. This is true here, and also in linear regression. Least squares is a con-
venient computational procedure, and it’s theoretical justification is Gaussian
models. We come back this theme often.

The maximum likelihood estimate of the mean and variance comes from
maximizing L or [ over both p and 0. Maximizing over p leads to (42) regardless
of . Maximizing over ¢ is the same as maximizing over v = 2. For this purpose
the log likelihood may be written:

-1
o) = 558 ~ gln(v) +C,

where now C is independent of the data and both parameters. Setting 9,!(u,v) =

0 gives
n

1
~ . ~2 =2
Uml = Oy — n Z (Xk: ,u) . (15)
k=1
The formulas (42) and (15) maximize L(X, u,0) over the parameters o and .
As the general theory predicts, the estimator (15) has bias of order 1/n. It
turns out (reader: this is simple algebra) that the estimator

n

1
~2 2 ~\2
ub s 1 ]; ‘ ( k /J) ( )

is unbiased in the sense that in the Gaussian model

Some people prefer the unbiased estimator (16) to the maximum likelihood
estimator (15). It is a very rare situation where the difference matters.



1.4 Hypothesis testing, and Student’s ¢ distribution

Hypothesis testing is the problem of answering a yes/no question using statistical
data. A positive answer takes the form:

“Yes” with probability 1 — p,

where p is a small probability. The confidence of the statement is 1 — p. Tradi-
tional confidence levels are 95% and 99%.

A traditional hypothesis test has two hypotheses, the null hypothesis and the
alternative hypothesis, denoted Hy and H; respectively. For example, suppose
X ~ N(u,0?) and only o is known (unlikely). Say Hy is the hypothesis = 0
and H; is the hypothesis y > 0. Rejecting the null hypothesis means stating,
with a satisfying level of confidence, that x4 > 0. If the data do not allow us to
reject the null hypothesis, we may be reluctant to say that we accept Hy, only
that the data or the test did not allow us to reject it. The power of a statistical
hypothesis test is it’s ability to reject the null hypothesis when Hj is in fact
false. Statistical tests are developed first by fixing a desired level of confidence,
then trying to increase the power.

Suppose we have n independent normal samples with known variance but
unknown mean, and we hope to state with high confidence that u > 0. The
reader should check (reader: please) that under Hy

11 <&
7 = - — X 1
g\/ﬁ;k (7)

has a standard normal distribution Z ~ N(0,1). If H; is true, this variable is
likely to be significantly positive. If Hy is true, it is not likely to be very far
from zero. This is quantified using the cumulative normal distribution func-
tion N(z) = Pr[Z < z]. Because the Gaussian distribution is symmetric, for
confidence level 1 — p, we may define the cutoff, z, by

Pr(Z >z, = N(—2p) = p. (18)

The 95% and 99% levels are zg5 = 1.96 and z,9; = 2.8. The statistical test is:
compute the z statistic from the data using (17). If Z > z,, say with confidence
1—pthat 4> 0. If Z < z,, report that you failed to reject the hull hypothesis.
This procedure — using the statistic (17) and the cutoff (18) — is called the Z
test.

We would like to modify this procedure for the more likely situation of
unknown x4 and o. A natural idea would be to replace o with the estimate (16)
s =0 = /02, in (17). The resulting statistic (recall that any function of the
data is a statistic) is called the Student’s® t statistic:

11
s /n -

3Student is a pseudonym for the early twentyeth century statistician William Gosset.

(19)




This defines ¢ as a function of X = (X1,...,X,), using (42) and (16). Student
noticed that the probability density of ¢ depends on n but not on the parameters
p and o. More precisely, if the Xj, ~ N(u,02), then the distribution of ¢ does
not depend on p and o.

This theorem of Student may be proven using the fact that if

X =p+ o027, (20)

then X ~ AN(u,0?) if and only if Z ~ N(0,1). If X3, = u+ 0Z; and the Zj,
then i and s? (from (42) and (16)) both are independent of y. Furthermore,
we see that (reader: check this)

t = +vn—1 z -
\/ZZ:1 (Zk _7)

This proves Student’s theorem by expressing ¢ in a way that is independent of
p and o. It is easy to use this definition of ¢ to find ¢, , so that

(21)

Prit > ty,,] =1—p.

The numbers ¢, , are tabulated in books and available in any decent statistical
software. Hypothesis testing with Gaussians of unknown p and o is: compute
@ from (42) and s from (16), then ¢ from (19). If ¢ > ¢, , you have confidence
1 — p in asserting p > 0. Otherwise, you have nothing. This Student’s t—test.

1.5 The distributions y? and ¢

The t random variable (21), and the related x? are interesting in their own right.
The have many uses as examples in statistics. We begin with y?. The definition
is that a x? (pronounced “chi squared”) random variable with n degrees of
freedom has the distribution

X =7, (22)

k=1
where the Z; ~ N(0,1) are independent standard normals. This definition
resembles the denominator of (21), a resemblence that soon will get stronger.
Although the definition (22) involves an n dimensional standard normal, x?2
itself is one dimensional.

2 Gaussian random variables

Gaussian random variables have a remarkable combination of properties that
anyone doing statistics must be aware of. Some of these are related to the central
limit theorem. Others are related to the connection between linear algebra and



transformation of multi-variate normals. This section is a quick review of some
properties of Gaussians.

It is easy to forget how special Gaussians are. Here is a list of warnings of
mistakes that can be made in forgetting that other random variables are not
like Gaussians

1. Maximum likelihood estimation is equivalent to least squares only for
Gaussians.

2. Un-correlation implies independence only for Gaussians.
3. Non-gaussians can have much larger tail probabilities than Gaussians

4. The mean and variance describe the random variable completely only for
Gaussians (and some other simple families).

5. Arbitrary linear transformations and combinations yield random variables
in the same class mostly for Gaussians.

6. The Cholesky algorithm for generating correlated Gaussians applies only
to Gaussians.

The univariate normal with mean p and variance o2 has density (13). The
multi-variate random variable X = (Xy,...,X,,) is multi-variate normal with
mean 4 = ({1, ..., M,) and covariance 3 (an n X n positive definite symmetric
matrix) if its probability density is given by

= 1 ! ex ixt 1y
1) = Gy e o (775 )

The notation for the multi-variate and univariate cases are slightly inconsistent.
If we take n = 1 in the multi-variate formula above, the 1 x 1 matrix > would
have as its single entry the number o2.

2.1 Limit Theorems

Suppose random variables Y}, are independent samples of a distribution f. Sup-
pose they have mean p and variance o2. Then the sample means converge to

75
_ 1 &
Y, = — Y; as .
N A

This fact, called the law of large numbers, is easy or hard to prove depending
on which version you take. The weak law of large numbers states that this limit
is taken in probability, the kind of convergence we used in the definition of a
consistent statistic. That is, for every ¢ > 0 and § > 0 there should be an N so
that if n > N then

PrH?n—M >e] < 9. (24)



The strong law of large numbers states that with probability one (called almost
surely in probability)

nler;OYH — 4 as n — 00. (25)
That is, there is zero probability that the limit does not exist or is not equal to p
is zero. The theorem that (25) holds with probability one under the hypothesis
that E[|Y|] < oo is the Kolmogorov strong law. It is one of the hardest theorems
in the first year PhD level probability class at Courant.
The x? distribution (22) is a good example of the use of the law of large
numbers. Take Yj, = Z2 (so that u = E[Y;] = 1), and get

L=l zn:Y 1
- = — — as n — o0 .
nX n k

k=1

This says that the y? random variable with n degrees of freedom is, to a first
approximation, equal to n. We will see shortly that this simplifies the ¢ statistic
(21).

The error in the law of large numbers is given by the Central Limit Theorem
(capitalized by tradition). A simple calculation shows that

where 02, = var[Y]. This suggests that Y, is on the order of 1/y/n, so that

has some kind of limit as n — oo. The numbers R,, themselves do not con-
verge*, but the distribution of the random variable R,, converges to a Gaussian
with mean zero and variance o%. A Basic Probability class has many techni-
cal statements of this convergence theorem under different technical hypothe-
ses. Omne simple one is that, for any a, (Z ~ N(0,1) is a standard normal,
oyZ ~N(0,0%))

Pr[R, < a] — PrloyZ < a] = N(oya) as n—oo. (27)

Warning: the accuracy of the approximation Pr[R, < a] = N(oya) depends
on a as well as n. In particular, the tails of R,, may be much larger than the
normal tails (tails of the Gaussian). See the exercises for some examples of this.
It is not safe to use the Central Limit Theorem approximation to estimate the
probabilities of rare events “in the tails” unless n is very large.

The limit theorems hold also for multivariate random variables. The law of
large numbers is exactly as (24) and (25). The only difference is that ¥ and pu

4Stochastic Calculus studies the relation between different numbers R, for large n. The
limit is related to Brownian motion.



are vectors with several components, and |7n — u’ is the norm of the vector in
a vector space of the appropriate dimension.

The Central Limit Theorem also holds for multivariate random variables.
Use the following terminology: Y is a multivariate random variable with m
components (Y1,...,Y,,). The covariance matrix of Y, here denoted Xy, has
entries

Oap = cov[Ya,Ys] = E[(Ya — pa)(Ya — pa)] -

This definition applies also to the diagonal entries ¢4, = var [Y,]. Let f(y), for
y € R™, be the probability density of Y. Let g,(r) be the probability density
for the m component random variable R,, defined by (26). Let g(r) be the
multivariate normal with mean zero and covariance Xy

1 1
(27T)m/2 det (Ey)

g(r) = exp (—r'Ey'r/2) .

The multi-variate Central Limit Theorem states that g,(r) — g(r) as n — oo.
For example, if A C R™ is an open set, then

lim Pr[R, € A] = /g(r)dr.
n—oo A

The warning above about the univariate Central Limit Theorem applies with
at least as much force here.

The multi-variate central limit theorem has many interesting applications.
For example, suppose U € [—1, 1] is uniformly distributed, and consider the two
component random variable Y = (U,U3). The covariance matrix of this Y is
easy to calculate:

011

var[U] = E[U?] = 1/1 w2du — 1
2 J_ 3
o1z = cov|[UU?] = E[U'] =

090 = var[U3] = E[U6] = %

2.2 Properties of the normal distribution

Gaussian random variables have many distinctive properties. Many of these
may be understood as consequences of the Central Limit Theorem. The dis-
tribution of a Gsussian random variable is completely determined by the mean
and variance (covariance matrix if multi-component). Therefore, any formula
about a Gaussian random variable must depend only on the mean and variance.
In particular, if the mean is zero, it must depend only on the variance.

For univariate normals, many formulas follow from the representation X =
pu~+oZ, where Z ~ N(0,1) is a standard normal. A normal X ~ N(u,0?) may
be represented in this way. Such a representation also is possible for multivariate
normals using the Cholesky factorization of 3, see below.

10



For example, if X ~ N (u,0?), there is a formula of the form
E[e*] = L(p,0).
We know this because whatever the left side is, it can depend only on the
parameters p and o. Representing X in terms of a standard normal, we have
et o

- V2T J o

The integral on the right is done by completing the square in the exponent:
oz —22/2=0%/2 — (2 — 0)?/2. Altogether (reader: check this)

_ .2
e 24z

L(p,0) = E[ete’?] = e Ele”?]

L(p,0) = ehtot/2 (28)

This formula also may be found as a direct consequence of the Central Limit
Theorem, done here (without loss of generality) for p = 0. Suppose Y is a
univariate random variable with E[Y] = 0 and var[Y] = o2. For example, we

could take Y ~ N(0,02). Then X,, = ﬁ >r_1 Yy (the Yj being independent
samples of Y) approximately (or possibly exactly) has the distribution A/(0, o?).

Therefore,
n
exp (ZY;JJH) ] .
k=1

The trick is to notice that the random variables Yy /y/n are independent, so the
exponential of the sum is the product of the exponentials. Moreover, the Y3 /\/n
have the same distribution, so the numbers E [exp(Y;/+/n)] are all the same.
Therefore,

L(0,0) = lim E

L(0,0) = lim (E[exp (Yi/Vn)])" (29)
Since Yy /y/n is small, we use the Taylor series expansion

1 1

exp(Ye/v/n) = 1 + %Yk + %Y,f 4 0(n73/2),

and

2
E [exp(Ye/Vn)] = 1 + ;7— + O = ot/ 20w
n

Putting this back into (29) gives (after some simplification)

L(0,0) = lim 7 /2+00Y*) — oo/

n—oo

)

as before. This is not a simpler way to derive (28), but it is more fundamental.
It explains (28) as a direct consequence of the Central Limit Theorem.

11



2.3 Linear changes of variables, \?, and ¢, again

Suppose A is an m X n matrix, so that Az € R™ ifx € R". f Y = AX + b and
X is multivariate normal, then Y also is multivariate normal. This theorem has
to be interpreted carefully if the row rank of A is less than m (i.e. if m > n, or
m = n and A is singular, or m < n and rank(A) < m), because in that case
the set of all possible Y values forms a proper subspace of R™, and Y has no
proper probability density. We ignore this case at least for a while, and probably
forever. The fact that AX is Gaussian when X is Gaussian may be calculated
by integration and linear algebra, but it also is obvious from the Central Limit
Theorem. If X is an average of a large number of i.i.d. (independent and
identically distributed) random variables, then AX also is such an average.
Linear algebra is an essential part of all Gaussian analysis.

One application is to the x? random variable. Suppose Z,...,Z, are n
independent standard normals, and consider the random variable

n n
=12 — 1
X = Zi — _ .
Y. (Z=Z) . where 7 = — Z Z; (30)
k=1 Jj=1

This is the denominator of (21). Linear algebra helps us determine the distri-
bution of X. Let M C R™ be the linear subspace of all vectors z € R™ with
mean zero: Z}Z:l z; = 0. There is an orthogonal projection Pps that projects
any z € R" to the closest point in M. If w = Pj;z then w minimizes

n

2 2
lw =zl = Y (2 —wy)

j=1
over all w € M. It is “easy to see” (i.e. you should be able to check, with
the background you have, in less than an hour) using the method of Lagrange
multipliers, that the w that minimizes ||w — zH; with the constraint Z?=1 w; =
1tw = 0 is given by

n
_ 1
Wi = 2i — 2 where z = — Zi .
b J ) J
n <
Jj=1

There, (30) is equivalent to
2
X = [[PuZ]l; - (31)

So, the distribution of X depends on the distribution of |[W||, = [|PaxZ||,,
when Z € R™ is a normal with mean zero and covariance Xz = I, and Py,
is orthogonal projection onto the subspace M. We can figure that out using
an orthonormal basis of R™ so that the first m vectors in the basis are an
orthonormal basis of M (m < n is the dimension of M, which need not be n—1
for this part of the argument). If these vectors are vy, then

m

1Puzly = > (vk2)” .

j=1

12



Now, the numbers Y, = ’UZZ are Gaussians with mean zero, variance one and
all covariances equal to zero. Therefore,

m
2
1PuZlly = Y Vi,

j=1

which is the sum of squares of m independent standard normals. The conclusion
is that the random variable X in (30) has the same distribution as the sum of
n — 1 squares of independent standard normals. That is, X ~ x2_;.

Return to the ¢ random variable (21). We have understood the denomina-
tor. But our analysis also shows that the numerator, Z is independent of the
denominator. Indeed, the numerator (in the terminology of the previous para-
graph) is a multiple of v} Z, which is a Gaussian independent of the others. The
conclusion is that the random variable (21) has the same distribution as

PR S— (32)

Xn1/(n—1)

where Z is a univariate standard normal. We put x2_;/(n — 1) in the denom-
inator to emphasize that it is a random variable with mean 1, for any n. The
number of terms in the y? distribution (22) is called the number of degrees of
freedom. The random variable that arises in the ¢ test (19) involves a x? with
n — 1 degrees of freedom when there are n data points. This is because one of
the n degrees of freedom is lost when we use the sample mean instead of the
true mean to estimate o2.

2.4 Fat tailed ¢

Besides its use in hypothesis testing, the ¢ random variable (32) often is used
simply as an example of a random variable with fat tails. For any random
variable, X, the tails refer to the probability of large positive or negative values.
The term is a little vague and is used in related but not entirely consistent ways.
For example, X is said to have power law tails if Pr[|X| > r] ~ r~? for large .
A number z is in the tails of a random variable distribution if Pr(X > z) is small
and if its distribution is well described by some simple large = approximation
at that point.

A random variable has fat tails, or heavy tails, if its tail probabilities are
larger than are convenient. How big is considered fat depends on the observer
and the application. Gaussian and exponential random variables have tails that
are exponentially thin: Pr(X > z) < e~*" (different C for different Gaussians),
or Pr(X > ) < e~ ¢ (for exponentials). The x? random variables also have
thin tails. Some people consider any power law tails to be fat, particularly if
the power is not very big. Some think a tail is not fat until var[X] = co.

Many random variables in life have fat tails: the sizes of earthquakes, wealths
of rich people, the sizes of requests to web sites, and sized of insurance claims
are among the many examples. Daily stock market returns are observed to have

13



power law tails with® p ~ 3. Gaussian models often are adequate for market
returns in the central regions (not the tails), but are terrible models for the
tails.

The ¢t random variable has power law tails, with the power p = n — 1. It
sometimes is used to model returns or other random variables that are expected
to have fat tails. There seems to be no quantitative argument for this, nothing
like the Central Limit Theorem argument for Gaussians. The power law may
be understood directly from formulas for the probability density of a ¢ random
variable (see e.g. Chapter 1 of Attilio Meucci’s book), but here we give a less
formal argument.

By far the most likely way to have a large ¢ in (32) is to have a small
X2, Z having exponentially thin tails. We figure out this probability from the
fact (see (22)), that if R ~ \/x2, then (f(Z) being the probability density of

—

Z=(Zy,..., 7))

Pr[R<r] = Pr{\/Z%+---+Z,%<r}
:/ £(2)dz
|Z]<r

= Cn/ e~ /2 n=1 s
s=0
C

"r™  for small r.

~

For the tail probabilities for ¢, we have (note that (32) has n — 1 degrees of
freedom)

Pr[t > tg] ~ Pr[R<1/tg] ~ Clhtg ™™V (33)

This is the tail behavior of the ¢ random variable. The number n appears as a
parameter in the formulas for the probability densities of ¢ and x2. This allows
them to be defined when n is not an integer. This would be silly for hypothesis
testing, but it is useful if we are using t as a generic fat tailed random variable.
It allows us to have power law tails where the power is not an integer.

3 Errors in parameter estimation

There are several ways to assess the accuracy of a statistical estimate of some-
thing. The mean square error (3) is one of the simplest, both in theory and in
practice.

5The power p =~ 3 is empirical, and is discussed at length in the interesting book Intro-
duction to Econophysics: Correlations € Complexity in Finance, by well known theoretical
physicists R. N. Mantegna and H. E. Stanley.
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3.1 Maximum likelihood

There is a simple error analysis for maximum likelihood estimation that involves

the Fisher information
2

1) = Eo| \ x99

This is a measure of how strongly the distribution of X depends on 6. Clearly, it
is impossible to estimate 6 from observations of X if the distribution of X does
not depend on 6. The quantity in (34) involves the derivative with respect to
9 of the log likelihood: 9y log(f(x,6)). The result is that if 8, is the maximum
estimate and 6 is the true parameter value, then, for large n:
~ 1 1
Var[Gn} ~ T (35)
A clever argument, called the Cramer Rao bound, shows that any statistical
estimator of # (except trivial ones) has mean square error at least as large as
(35), approximately. This is described in any good statistics book, but not here.
The derivation of (35) helps us to understand many other parameter esti-
mation methods. We adopt the Bayesian practice of distinguishing between
different functions by the names and number of arguments, starting with the
expected log likelihood function

16) = By, [In(f(X.0))] = / In(f (2, 0)) f (. 60) da .

Here, and for the next few paragraphs, we call the exact parameter value 6.
The derivative of [ with respect to 6, with 0y fixed, is

m(0) = 9 Eg,[In(f(X,0))] = Mf(mo)dx.

f(z,0)
In particular, since [ f(x,0)dz =1 for all 6, we have®
m(fy) = /89]‘(3:,6) dr = 0,

and (with some algebra)

o) = - [ (W}Qﬂx,e@)dx -,

( 99.f (X, 00) )2

(X, 00)

This is the negative of the Fisher information (34). This shows that 6y is at
least a local maximizer of 1(6), since " (6y) < 0.

6This has an important interpretation in terms of information and relative entropy that
we skip over for now.
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With this, we can understand the difference between 6y and 0 using the
Central Limit Theorem and Taylor series. We find 6 by maximizing the log
likelihood with respect to #. This is the same as setting the derivative of the
log likelihood function to zero. In formulas, (writing My = 9p In(f (X%, 0)))

n

0= 85 UX,0) = > M(0).
k=1

k=1
Now (and this is the main point), we already have calculated that Ep, [M}(6)] =
m(0) and, in particular, that

Ep, [ Mr(60)] = 0.

Also, (this seems like a coincidence, but it is not really)

V&I‘[Mk(ao)] = EOO[Mk(90)2] = Ey,

Putting these facts together,

0= zn:Mk(a) ~ zn:Mk(eo) + <zn:M/c(90)> (5—90) :
=1 k=1 k=1

Therefore N

%1 ZMk(eo)

o k=1
0—bp % — 57—,

1
— M!
- > M (6)
k=1
The numerator is approximately (Central Limit Theorem) a normal with mean
zero and variance 11(6p). The denominator is approximately (law of large

numbers) I(6p). Therefore, 0— 0y is approximately normal with mean zero, and

variance approximately
1 I(6) 1 1

n 1(60)2  n ()’
as claimed. A longer calculation of this kind shows that

~ ~ 1
bias(&n) — By, [en - 90] - o() .
n
The error coming from the variance is much larger than the error coming from
the bias.

The multivariate case 8 = (01, ..., 60,,) is just about the same (see the GMM
section below). Calculations just like those above show

cov [5} R~ %I‘l @) . (36)

Here I is the information matrix whose entries are

B9, (X, 0)9, (X, 0
L — Ee[ o, f( f())(,g)f( )
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3.2 Maximum likelihood and multivariate normals

Suppose that X € R™ is multivariate normal and that we have independent
observations X, for k = 1,...,n. The maximum likelihood estimate of the
mean is the sample mean as before

i = X = =Y X (37)
k=1

S|

The maximum likelihood estimate of the covariance matrix is the sample co-

variance .
~ 1 == <\t
Yl = — - — .
m o= - (X = X) (X - X) (38)
k=1
We give a derivation of these formulas, mostly as practice doing matrix

algebra. What we called # in the abstract theory is now the mean and covariance:

0 = (u,X) .

Let d be the number of components of X (as opposed to n, the number of
samples). The number of parameters in 6 is d for the components of u, and
d(d + 1)/2 for the unknown entries of the symmetric matrix Y. There are n?
entries in X, but the entries below the diagonal are the same as the corresponding
entries above. Altogether, there are d(d + 3)/2 unknown parameters. This is a
very large number, if d is large. Estimating a large number of parameters either
is unreliable or requires a very large amount of data. This makes estimating
general Gaussian models problematic in many component situations.
For the multivariate normal, the probability density is

1 1 -1

Fo) = ) = s exp<2

=0 S )
Taking the log gives (C is independent of the data and the parameters.)

o ®) = O — Sin(det (%) — L@ —p)' S @—p) . (39)

We find i by minimizing over u. The derivative is
m(x, pu,¥) = Vﬂl(xa 1Y) = D (x—n) .

As long as ¥ is non-signular,

n

S om(Xp %) =0 = > Xp-—nji=0,
k=1 k=1

which is the formula (37).
Differentiating with respect to ¥ is more complicated. You have to do it
carefully or the mess of indices will be overwhelming. The method of wvirtual
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perturbations is one convenient approach. Suppose G(A) is a function of a
symmetric matrix, A. Suppose A is another symmetric matrix, which we call
the virtual perturbation. The corresponding virtual perturbation of G is

G(A,A) = }1113%% (Ga+nd)-c)) .
This is just the directional derivative of G in the direction A. We can maximize a
scalar function of A by setting G = 0 for all A. The method works for symmetric
or non-symmetric matrices, but the application we have calls for symmetric.

The virtual perturbation method makes is easy to differentiate using the
product rule and implicit differentiation. The product rule is clear:

(FG) = FG + FG.

This is true even if G and H are matrices or vectors, as the reader should check.
We compute the derivative of the matrix inverse function as an example of the
technique in action. Write A~! = B in the form AB = I. Then differentiate,
use the product rule, and note that I=0:

AB+ AB =0 = B = —A"'AB = —A7'447'.
This is the matrix version of the formula

d | _sdzx
%"E =X E s
but in the matrix version, the & term goes between the two z~! terms.
The target application (39) asks us to differentiate det(X). For this there is
the elegant formula (the left side is G, where G(A) = In (det (4)).)

In (det(A)) = Tr (A—lA) . (40)

On the right side is the trace: Tr(B) = 22:1 Byi,. The proof of (40) is below.
We now have the tools to differentiate (39):

. 1 . 1 .
i — _§Tr(2*12) +5@—p)' SIS @ - )
Now again we assume that X is invertible, so we can use the change of variables
Y1uY~! = M, so that ¥ = ¥ MY, and allowing all possible M is the same as
allowing all possible . With this,
. 1 ) 1 .
I = —§Tr<ME) + i(x—u) M(x—p) .

We use this to get information about ¥ by taking M in a special way. In
particular, take M to be non-zero only in entries” (a, 3) and (8, a), with M, =

"We use Greek letters here to distinguish from Latin letters what index the sample. In
general, Greek letters from from 1 to d, while Latin letters run from 1 to n.
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Mpo = 1. In view of the formula

d d d d
ZZ ApBga = )Y AapBas ,
a=1 k=0

j=1 k=0

(the last only if B is symmetric) we have

i = —0Oag + (xoz - Hu)(xﬁ - /.Lg) :

The factors of % disappeared in case because there were two equal terms, one
from (o, 8) and the other from (3, ). It would help the reader to check that
this formula also is true in the case a = .

3.3 GMM, Generalized Method of Moments

This is less systematic than maximum likelihood but simpler to apply in many
situations. Suppose you have parameters § = (61,...,0,,) and a family of
probability distributions depending on 6. You also have n independent samples
of the 0 distribution and want an estimate, §. The idea is to have m (or more,
see below) functions g1 (), ..., gm(x) whose moment functions are known:

M(0) = Eplg(X)] . (41)

These are moments if gp(x) = 2*, and generalized moments otherwise. The
generalized method of moments, or GMM, is to estimate

My = %Zgog), (42)

then choose 6 by solving the equations
M(@) - M. (43)

We can estimate the error in the GMM using the ideas we just used for
maximum likelihood. In fact, maximum likelihood may be viewed® as a special
case of the GMM. For large n, M=M+ \FX where X is a mean zero finite

variance (i.e. variance independent of n) random variable that is approximately
normal. We then have, as before

~ 1 ~ 1 -1
M'() (9—9) N X = O~ 04— (MO)X.
NG N
8This does not make GMM better than maximum likelihood. In fact, we showed that for
large n, maximum likelihood achieves the Cramer Rao bound. Therefore, the best another

GMM method (based on other moments than ) could do is to be as good as maximum
likelihood.
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This implies that the estimation error is approximately normal for large n (as
most things are in theory), and that the error is determined by (M’(6))"" and
the covariance matrix for X. Let us call this matrix G = covy [¢(X)]. Then

cov[a} ~ (M) G(6) (M'(6)~" . (44)

Here we use write A~ for the transpose of the inverse of A, which is the same
as the inverse of the transpose of A (that is, A=t = (A‘l)t =(AH7.

The maximum likelihood case has two special properties that make its for-
mula (36) simpler than the more general (44). One is that the m moment
functions M (0) are derivatives with respect to the components of 6, so the en-
tries of m X m martix M’ are second derivatives. This makes the matrix M’
symmetric, which is why we did not see the transpose before (44). The other
reason is that (M’ )_1 G = I, which seems to be a coincidence related to the log
function.

An example for the method of moments is a Gaussian mizture model. This
assumes that there are two Gaussians and a probability p € (0,1). You first
choose one of the Gaussians with probability p, then choose X using that Gaus-
sian. For simplicity, suppose both normals have mean zero, so we only have
variances o3 and o3. Then, with probability p we take X = 01Z and with
probability 1 — p we take X = 02Z. Here, Z ~ N(0,1) is a standard normal.
The probability density for X is

The three parameters are 07, 02, and p. It is not easy to estimate them by
maximum likelihood, but it is easier to use moments.
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