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ODE solvers, Linear Multistep methods

1 Introduction

We are still discussing numerical methods for the initial value problem for the
ODE

ẋ = f(x) . (1)

For the first part of this class we assume a fixed time step ∆t and use notation
from last class: tn = n∆t and Xn ≈ x(tn). Multi-step ODE solvers with
maximum lag s have the form

Xn+1 = Ψ(Xn, · · · , Xn−s,∆t) .

Runge Kutta methods have zero lag. Using lags allows for higher order of
accuracy without multiple evaluations of f per time step. This if ∆t is the same
and the method is fourth order accurate (say), this allows fourth order accuracy
with one evaluation per time step rather than the four needed for Runge Kutta.

There are practical disadvantages of multistep methods too. One is how to
start. If you are given X0, you can compute X1 with a Runge Kutta method
but not with a multi-step method. Stability is a primary and subtle issue for
multi-step methods. There was no issue with stability of explicit Runge Kutta
methods because they all have the form

Ψ(x,∆t) = x+ ∆tΨ̃(x,∆t) .

The part that multiplies ∆t is build from f

Warning: Starting with Section 3, we will use the convention of writing mul-
tistep methods “in the future” rather than “in the past”. We will change the
index n so that an explicit multi-step method has the form

Xn+s = Ψ(Xn+s−1, · · · , Xn,∆t) . (2)

I believe this convention was adopted because it makes the characteristic poly-
nomial of the recurrence relation (defined below) seem more natural. If that’s
true (?dunno?), it means that somebody thought it was better to confuse the
person implementing the method than to confuse the person doing the analysis.
Section 2 does not use this convention.
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2 Motivating examples

The same ideas that motivated multi-stage methods can be used to motivate
the first multi-step methods. We find new ways to modify forward Euler to get
to second order, and then ask how to generalize those ideas.

One trick is to center the scheme about tn using values from tn−1 and tn+1.

ẋ(tn) =
1

2∆t
[x(tn+1)− x(tn−1) ] +O(∆t2) .

This means that the exact solution satisfies

x(tn+1) = x(tn−1) + 2∆tf(x(tn)) +O(∆t3) .

This suggests that we can build a second order method by neglecting the error
term:

Xn+1 = Xn−1 + 2∆tf(Xn) . (3)

This is not a one step method because you have to know both Xn and Xn−1 to
compute Xn+1. It is often called leapfrog because of a children’s game with that
name in which kids take turns jumping over each other1 It is a second order
accurate method that uses just one f evaluation per time step.

Another idea involving centering starts from

f(x(tn+ 1
2
)) = ẋ(tn+ 1

2
) =

x(tn+1)− x(tn)

∆t
+O(∆t2) . (4)

The notation for the midpoint of the interval [tn, tn+1] is

tn+ 1
2

= (n+ 1
2 ) ∆t .

We can make this into a practical second order method if you predict the mid-
point value f(tn+ 1

2
) using earlier values of f . We have evaluated f at times

tn and tn−1, so linear extrapolation would get to time tn+ 1
2

with second order

accuracy. The linear approximation to F (t) = f(x(t)) using these values is

F̃ (t) = F (tn) + sn(t− tn)

sn =
F (tn)− F (tn−1)

tn − tn−1
.

(5)

We want to evaluate at t = tn+ 1
2
, which is

F̃ (tn+ 1
2
) = F (tn) +

1

2
(F (tn)− F (tn−1))

=
3

2
F (tn)− 1

2
F (tn−1) .

1Look at the Wikipedia page. The image might be that you jump over tn to go from tn−1

to tn+1.
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Substituting this for f(x(tn+ 1
2
)) in (4) gives

x(tn+1) = x(tn) + ∆t

[
3

2
f(x(tn))− 1

2
f(x(tn−1))

]
+O(∆t3) .

As for the leapfrog scheme, we get a practical method by neglecting the error
term:

Xn+1 = Xn + ∆t

[
3

2
f(Xn)− 1

2
f(Xn−1)

]
. (6)

This is the second order Adams Bashforth scheme. It achieves second order
accuracy using lagged values of f rather than lagged values of X.

3 Adams Bashforth Methods

A linear multistep method of order s gets the new X using s trajectory and
function values. It gets Xn+s as a linear combination of s most recent trajectory
values, Xn+s−1, · · · , Xn, and corresponding function values Fk = f(Xk).

The Adams Bashforth method of order s does this by (approximately) inte-
grating the ODE (1) over over the time interval from the most recent computed
time to the next time. The formula for the exact solution is

x(tn+s) = x(tn+s−1) +

∫ tn+s

tn+s−1

f(x(t)) dt . (7)

Adams methods replace the integrand f(x(t)) with an interpolating polynomial
p(t), of degree s− 1 that satisfies the s interpolation conditions

p(tk) = f(Xk) , k = n, n+ 1, · · · , n+ s− 1 .

There is a unique polynomial of degree s − 1 that satisfies these conditions.2

This interpolation is a linear operation in the sense that p depends linearly on
the interpolation values f(Xk), so the integral does too. This implies that there
are numbers bj so that∫ tn

tn+s−1

p(t) dt = ∆t [ bs−1 f(Xn+s−1) + · · ·+ b0 f(Xn) ] . (8)

For example, the second order scheme (6) has s = 2, and b1 = 3
2 , and b0 = − 1

2 .
Adams Bashforth methods use the right side of (8) instead of the exact integral
on the right side of (7), which leads to

Xn+s = Xn+s−1 + ∆t [ bs−1f(Xn+s−1) + · · ·+ b0f(Xn) ] . (9)

This is the Adams Bashforth method of order s.

2 The theory of polynomial interpolation is described in the book Numerical Methods by
Dahlquist and Björk.
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The right side of (8) has an overall factor ∆t and coefficients bj that do not
depend on ∆t. You can see that it should be this way by first asking what would
happen with ∆t = 1. This could be used to define the numbers bj . When you
rescale time by ∆t, the integration interval shrinks by a factor of ∆t and p(t)
scales in the same way. The only change is the ∆t factor on the right of (8).

The second order method (6) was derived using extrapolation rather than
integration. It has order s = 2 because, in our numbering convention, it gets
Xn+2 from Xn+1 and the function values f(Xn+1) and f(Xn). The function

F̃ (t) in (5) is the interpolating polynomial. It has degree s−1 = 1 (linear). The

integral of the constant term of F̃ is ∆tf(Xn). The integral of the linear term
is the area of the triangle with the slope on top sn, which is

1

2
∆t2sn =

1

2
∆t [ f(Xn)− f(Xn−1) ] .

Combining these gives the second order Adams Bashforth (6). The integration
approach here leads to Adams Bashforth methods of any order, s.

It is also possible to derive the values of the coefficients bj from the point of
view of Section 2. We explain this using the numbering convention of Section
2, in which we get Xn+1 using Xn and f(Xn), · · · , f(Xn−s+1). We look for a
formula for the finite difference

x(t+ ∆t)− x(t)

∆t

in terms of the true derivative at lagged times, and you want the formula to be
accurate to a certain order:

x(t+ ∆t)− x(t)

∆t
= bs−1 ẋ(t) + · · ·+ b0 ẋ(t− (s− 1)∆t) +O(∆ts) . (10)

The ODE allows us to replace derivatives ẋ with corresponding values of f ,
which puts (10) in the Adams Bashforth form

x(t+ ∆t)− x(t)

∆t
= bs−1 f(x(t)) + · · ·+ b0 f(x(t− (s− 1))∆t) +O(∆ts) .

The algebra for finding the coefficients in (10) is an example of the method
of undetermined coefficients for finding finite difference approximations of all
kinds.3 You assume an approximation of a certain order with unknown coef-
ficients, insert Taylor approximations to the appropriate order, derive a set of
equations for the coefficients by matching terms (see example), and then solve
the equations for the unknown coefficients.

We simplify the LaTeX version of the algebra by changing notation. The
independent variable will be called x instead of t. The function will be u(x)
instead of x(t). The step will be h instead of ∆t. Derivatives will be u′ and u′′

instead of ẋ, ẍ, etc.

3Chapter 7 of Numerical Methods by Dahlquist and Björk has a beautiful discussion of
this kind of thing.
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We first re-derive the second order method of Section 2 in this framework.
This calls for an approximation of the form

u(x+ h)− u(x)

h
= b1u

′(x) + b0u
′(x− h) +O(h2) . (11)

We use Taylor approximations, and write u for u(x), etc.:

u(x+ h) = u+ hu′ +
h2

2
u′′ +O(h3)

u′(x− h) = u′ − hu′′ +O(h2) .

We substitute these in and calculate:

u+ hu′ + h2

2 u
′′ +O(h3)− u
h

= b1u
′ + b0

(
u′ − hu′′ +O(h2)

)
u′ +

h

2
u′′ +O(h2) = b1u

′ + b0u
′ − h b0u′′ +O(h2)

In order for this formula to be true, the coefficients of various powers of h on
the left and right sides have to agree. Specifically, the terms independent of h
(order h0) and h1 terms on the two sides must agree separately. It happens that
(no coincidence) the order h0 terms both have coefficient u′ and the order h1

terms both have u′′. Thus, the accuracy condition are

coefficient of u′ : 1 = b1 + b0 (12)

coefficient of u′′h :
1

2
= −b0 (13)

Equation (13) gives

b0 = −1

2
.

Substituting this into equation (12) gives

b1 =
3

2
.

This gives the approximation

u(x+ h) = u(x) + h

[
3

2
u′(x)− 1

2
u′(x− h)

]
.

This is yet another derivation of the second order Adams Bashforth method (6).
The third order Adams Bashforth method is built from an approximation

like (11) that uses one more lag and is accurate to one more order:

u(x+ h)− u(x)

h
= b2u

′(x) + b1u
′(x− h) + b0u

′(x− 2h) +O(h3) .
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Working this out requires Taylor approximations of one more order. On the left
side is:

u+ hu′ + h2

2 u
′′ + h3

6 u
′′′ +O(h4)− u

h
= u′ +

h

2
u′′ +

h2

6
u′′′ +O(h3) .

On the right side is (check this carefully)

b2u
′ + b1

(
u′ − hu′′ + h2

2
u′′′
)

+ b0
(
u′ − 2hu′′ + 2h2u′′′

)
= ( b2 + b1 + b0 )u′ + (−b1 − 2b0 )hu′′ +

(
1

2
b1 + 2b0

)
h2u′′′ +O(h3) .

We equate corresponding terms from the left and right to get three accuracy
conditions:

coefficient of u′ : 1 = b2 + b1 + b0 (14)

coefficient of u′′h :
1

2
= −b1 − 2b0 (15)

coefficient of u′′′h2 :
1

6
=

1

2
b1 + 2b0 (16)

We solve the equations by elimination. Adding (15) and (16) eliminates b0 and
leaves

2

3
= −1

2
b1 =⇒ b1 = −4

3
.

Substitute the b1 value back into (15), and you get

1

2
=

4

3
− 2b0 =⇒ b0 =

5

12
.

Finally, use the known b1 and b0 in (14), and you get

1 = b2 −
4

3
+

5

12
=⇒ b2 =

23

12
.

The finite difference approximation is

u(x+ h)− u(x)

h
=

23

12
u′(x)− 4

3
u′(x− h) +

5

12
u′(x− 2h) +O(h4) .

You translate this back to the x(t) and n+ s notation and get

x(tn+3) = x(tn+2)+∆t

(
23

12
f(x(tn+2))− 4

3
f(x(tn+1)) +

5

12
f(x(tn))

)
+O(∆t4) .

The corresponding third order Adams Bashforth method is

Xn+3 = Xn+2 + ∆t

(
23

12
f(Xn+2)− 4

3
f(Xn+1) +

5

12
f(Xn))

)
. (17)
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You can find the same third order Adams Bashforth method (17) using the
interpolating polynomial method. First, you write a formula for the three point
quadratic interpolating polynomial. This is a quadratic generalization of the
two point linear interpolating function (5). Then you integrate each of the
three terms over the interval [tn+2, tn+3]. Some more algebra would put the
result in the form (17).

These calculations are typical of what people do to find high order meth-
ods. The calculations take hours or days and the coefficients turn out to be
complicated rational numbers. This can be automated using symbolic algebra
software, also called computer algebra.

4 General linear multistep methods

The general linear multi-step method gets the new value using lagged values of
X and f . We saw that Adams Bashforth methods use lags only on f . The
second order leapfrog method (3) uses lags on X but not f . The general form
that for an order s method that uses both X and f lags is

Xn+s+as−1Xn+s−1 + · · ·+a0Xn = ∆t [ bs−1f(Xn+s−1) + · · ·+ b0f(Xn) ] (18)

The leapfrog method (3) has this form with s = 2, a1 = 0, a0 = −1, b1 = 2,
and b0 = 0.

The residual (also called local truncation error) is the amount by which
the exact solution values x(tn) fail to satisfy the discrete equations (18). The
method has formal order of accuracy p if the residual has order ∆tp+1. In that
case, we pull out the factor ∆tp+1 and define the residual coefficient function
r(t,∆t)) by

x(tn+s) + · · ·+ a0x(tn) = ∆t [ bs−1f(x(tn+s−1)) + · · ·+ b0f(x(tn)) ]

+ ∆tp+1r(tn,∆t) .

This is the definition of r, since x is the solution of the ODE. Taylor asymptotic
calculations (long ones) give asymptotic expansions

r(t,∆t) ∼ r0(t) + ∆t r1(t) + · · · .

The order of accuracy is exactly p if r has this form and r0 is not zero. For
example, when we say a method is first order we normally mean to imply that
it is not second order.

Some tricks from Section 3 help with the algebra. One is to use the ODE
and substitute ẋ for f(x) on the right. This gives

x(tn+s)+· · ·+a0x(tn) = ∆t [ bs−1ẋ(tn+s−1) + · · ·+ b0ẋ(tn) ]+∆tp+1r(tn,∆t) .
(19)

Then we ask that (19) should be true for any smooth function x(t) without
referring to the ODE that x(t) satisfies. Also, although the solution x(t) to an
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ODE usually has many components, (19) does not couple different components.
Therefore, we may assume that x(t) has just one component. Next, (19) holds
for any smooth x(t) if it holds exactly (with r = 0) when x is a power of t up to
tp. You can see this using the Taylor approximation of x(t + k∆t) up to order
p. The relation (19) will be satisfied if the coefficients of ∆tm match for m up
to p. This happens if (and only if) it is true when x(t) is exactly a power or t
up to tp. Finally, x(t) is a power of t, you may take t = 0 and ∆t = 1. All of
these simplifications imply we need to get r = 0 when

x(tnk
) = km

ẋ(tn+k) = mkm−1

m = 0, · · · , p .

With these simplifications, the conditions are

m = 0 : 1 + as−1 + · · ·+ a1 + a0 = 0
m = 1 : s+ as−1(s− 1) + · · ·+ a1 = bs−1 + · · ·+ b0

etc.

These equations are systematic and easy to formulate and solve. By contrast,
the accuracy conditions for Runge Kutta methods are complicated and do not
seem that systematic.

There are characteristic polynomials associated to linear multistep methods

ρ(z) = zs + as−1z
s−1 + · · ·+ a0 (20)

σ(z) = bs−1z
s−1 + · · ·+ b0 . (21)

These are convenient ways to describe the deeper theory of linear multi-step
methods. For example, the first two accuracy conditions may be written as

ρ(1) = 0 (22)

ρ′(1) = σ(1) .

5 Convergence and accuracy theory

Convergence and accuracy theory for linear multistep methods, like it was for
Runge Kutta methods, is about showing the error is on the order of the residual.
This was always true for Runge Kutta methods, but not here. Linear multistep
methods can be unstable. An unstable method can have errors that amplify the
residual by factors of gn with g > 1. This allows the error to look like

gn∆tp+1r .

If you fix T = tn = n∆t and do some algebra, this becomes

gn

np+1
T pr . (23)
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The fraction goes to infinity as n→∞ no matter the order of accuracy, p. We
will show that linear multistep methods converge with an error related to the
residual if the method is stable.

A scheme is unstable if solutions of the discrete equations (18) grow too
rapidly. This growth is not related to growth of solutions of the ODE. Solutions
of an ODE may grow in time, but that growth is not a function of ∆t. By
contrast, the growth factor (23) goes to infinity as ∆t → 0 for any positive T .
For this reason, you can try to understand the stability/instability of a linear
multistep method by asking what it does for the trivial ODE

ẋ = 0 .

A method that cannot solve this ODE correctly will not be much use on harder
problems. When ẋ = 0, the bk coefficients are irrelevant. Zero stability is the
condition that the numerical solution Xn remains bounded, as the solution of
the ODE does, trivially.

Definition. A linear multi-step method is zero stable if there is a C so that
solutions of the recurrence relation

Xn+s + as−1Xn+s−1 + · · ·+ a0Xn = 0 (24)

satisfy, for all n > 0,

|Xn| ≤ C max { |X0| , · · · , |Xs−1| } . (25)

The theory of linear recurrence relations gives a criterion for this, which
involves the characteristic polynomial of the recurrence. This happens to be
the ρ characteristic polynomial (20) of the method (check this).4 If zk is a
root of ρ, that is, ρ(zk) = 0, then Xn = znk satisfies the recurrence relation
(24), because znk factors out. If |zk| > 1 then Xn = znk makes the left side of
(25) go to infinity while the right side obviously does not. Thus: a root of the
characteristic polynomial outside the unit circle in the complex plane implies
that the method is not zero stable.

You might object that the definition of zero stability (25) is about real
numbers and the root zk might not be real. However, if zk is not real then the
real part and imaginary parts are real solutions

Xn = Re(znk ) , or Xn = Im(znk ) .

If |znk | → ∞, then either the real part or the imaginary part also blows up,
because

|z|2 = [Re(z)]
2

+ [Im(z)]
2
.

If there is an “unstable” complex solution to the recurrence relation (24), then
there is an unstable real solution.

4The strange indexing in (18) used to describe linear multi-step methods was chosen to
make the indexing of the characteristic polynomial have coefficient corresponding to power:
akz

k.
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Roots on the unit circle, |zk| = 1, zk = eiθ, have |znk | = 1 for all n. Zero
stability does not forbid roots of the characteristic polynomial on the unit circle.
In fact, the consistency condition (22) shows that any linear multistep method,
even a first order accurate one, has a root z1 = 1 on the unit circle. What makes
stability subtle is the possibility of double roots of ρ on or inside the unit circle.
Multiple roots inside are OK while roots on the unit circle are bad.

Theorem. The recurrence relation is zero stable in the sense of (25) if and
only if all roots ρ(zk) = 0 have |zk| ≤ 1 and if all roots with |zk| = 1 are simple.
That is: all roots must be in the (closed) unit circle of the complex plane (more
properly, unit disk) and roots on the unit circle must be simple.

For example, all Adams Bashforth methods are stable in this sense. With s
lags, they have

ρ(z) = zs − zs−1 = (z − 1)zs−1 .

This polynomial has a root on the unit circle, z1 = 1 and the rest of the roots
zk = 0. This is not a simple root, but is is not on the unit circle.

The leapfrog method (3) has ρ(z) = z2 − 1. The roots are z1 = 1 and
z2 = −1. These are simple roots on the unit circle.

The theorem an “if” and “only if” theorem. If there is a bad root then the
recurrence is unstable. If there are no bad roots than the recurrence is stable
in the sense (25). We saw that a root |zk| > 1 makes the recurrence unstable.
A multiple root with |zk| = 1 leads to solutions with polynomial rather than
exponential growth as a function of n. We will see, for example, that if zk
is a double root, then Xn = nznk satisfies the recurrence. either the real or
imaginary part (or both) of this sequence grows linearly with n. These are
weak instabilities. A method that is only weakly unstable might work for some
problems, but it is like a Rube Goldberg device in that you have to be lucky for
it to work.

The main point of the theorem is that the behavior of solutions like znk and
nznk , which are power law and generalized power law solutions, determines the
behavior of all solutions of the recurrence relation. This is because power law
and generalized power law solutions form a basis for the set of all solutions.

5.1 An unstable method

You don’t have to look far to find an unstable linear multi-step method. Just
look for the explicit three step (s = 2) method with the highest order of accuracy
for such a method. That one is unstable. Here’s the math.

The method in question would have the form

Xn+2 + a1Xn+1 + a0Xn = ∆t [ b1f(Xn+1) + b0f(Xn) ] .

This method doesn’t have a name because nobody uses it, because it’s unstable.
As in Section 3, we find the coefficients using the method of undetermined

coefficients and Taylor approximations. We also make the algebra quicker using
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u(x) instead of x(t). After some trial and error, it seems that the best order of
accuracy is p = 3. We find coefficients so that

u(x+ h) + a1u(x) + a0u(x− h) = h [ b1u
′(x) + b0u

′(x− h) ] +O(h4) . (26)

The Taylor expansions for this need to include up to h3 terms for u and up to
h2 terms for u′ (because the u′ terms have an h pre-factor). Again, we write u
for u(x), etc. The calculation starts with

u+ hu′ +
h2

2
u′′ +

h3

6
u′′′ + a1u+ a0

(
u− hu′ + h2

2
u′′ − h3

6
u′′′
)

= h

[
b1u
′ + b0

(
u′ − hu′′ + h2

2
u′′′
)]

+O(h4) .

Next, we equate coefficients of powers of h as before:

coefficient of u : 1 + a1 + a0 = 0

coefficient of hu′ : 1 − a0 = b1 + b0

coefficient of h2u′′ :
1

2
+

1

2
a0 = −b0

coefficient of h3u′′′ :
1

6
− 1

6
a0 =

1

2
b0

The last two equations give a0 = −5 and b0 = 2. Then, the first two equations
give a1 = 4 and b1 = 4. The method (translating back to the appropriate x and
t variables)

Xn+2 + 4Xn+1 − 5Xn = ∆t[ 4f(Xn+1) + 2f(Xn) ] . (27)

People would use this method and it would have a name if it were stable, because
it would give the same order of accuracy of the Adams Bashforth method with
fewer lags.

The characteristic polynomial equation for zero stability is

ρ(z) = z2 + 4z − 5 = 0 , z = −2± 3 .

The root z = 1 is a check on the algebra, since the characteristic polynomial
for a linear multi-step method always has z = 1 as a root. The other root is
z = −5, which is (far) outside the unit circle.

5.2 Solutions of linear recurrence relations

We just saw that roots of the characteristic polynomial give solutions of the
recurrence relation. It would be nice if all solutions were linear combinations
of these basic solutions, and that is almost true, but not quite. It is true if the
roots are distinct, but the story is more complicated if there are double roots
(or higher).
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Double roots and higher might seem unlikely to occur in “real problems”
because they are not generic. If you choose the coefficients by a continuous
probability density, then the probability of getting a ρ with a multiple root is
zero. But “real problems” are not necessarily chosen at random and we have to
face the possibility of multiple roots.

Suppose zk is a double root of ρ. This means that ρ(zk) = 0 and ρ′(zk) = 0.
You can check that ρ(zk) = 0 implies that Xn = znk satisfies the recurrence
relation (24). You just factor out zn:

zn+sk + as−1z
n+s−1
k + · · ·+ a0z

n
k =

[
zsk + as−1z

s−1
k + · · ·+ a0

]
znk

= ρ(zk)znk

= 0 .

If ρ′(zk) = 0 too, then you can differentiate this to get

(n+ s)zn+s−1k + as−1(n+ s− 1)zn+s−2k + · · ·+ a0nz
n−1
k

= ρ′(zk)znk + nρ(zk)zn−1k

= 0 .

You can multiply both sides by zk and see that the sequence

Xn = nznk

also satisfies the recurrence relation (24). You can continue this process to see
that n2z2k satisfies the recurrence relation if ρ′′(zk) = 0, etc.

The root zk has multiplicity m if you can factor out (z − zk)m but not
(z − zk)m+1. This is equivalent to(

d

dz

)r
ρ(zk) = 0 , for r = 0, · · · ,m− 1 , but

(
d

dz

)m
ρ(zk) 6= 0 .

This is equivalent to the recurrence relation having solutions

Xn = nrzn1 (28)

(r = 0, 1, · · · ,m − 1, but not r = m) that satisfy the recurrence relation. The
solutions with r = 0 are power law solutions. The solutions with r = 1, 2,, etc.,
are generalized power law solutions. Section 5.3 will show that power law solu-
tions correspond to eigenvectors of the companion matrix (30), and generalized
power law solutions correspond to generalized eigenvectors. It is a theorem in
linear algebra that a family of eigenvectors and generalized eigenvectors of a
matrix forms a basis. Therefore the set of power law and generalized power law
solutions forms a basis for the set of all solutions of the recurrence.
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5.2.1 Jordan blocks

A Jordan block of size m with eigenvalue λ is the matrix with λ on the diagonal,
1 on the super-diagonal, and the rest zero

J(λ) =



λ 1 0 · · · 0

0 λ 1 0
...

... 0
. . .

. . .

λ 1
0 · · · 0 λ

 (29)

A Jordan form of a matrix is a block matrix with diagonal blocks of the form
Jk(λk) and size mk. It is a theorem of linear algebra that any s×s matrix has
a non-singular matrix V so that

V −1AV =


J1(λ1) 0 0

0 J2(λ2) 0

0 0
. . .

 .

If all the sizes mk are equal to one, then the columns of V are eigenvectors of
A and the λk are the corresponding eigenvalues. If A has “non-trivial Jordan
structure” (some mk > 1), then some of the columns of V are generalized
eigenvectors.

We illustrate generalized eigenvectors with a Jordan block of size m = 3:

J =

λ 1 0
0 λ 1
0 0 λ

 .

The eigenvectors and generalized eigenvectors are

v1 =

1
0
0

 , v2

0
1
0

 , v3

0
0
1

 .

You can calculate that

Jv1 =

λ0
0

 = λ

1
0
0

 = λv1 .

Thus, v1 is an eigenvector of J . Next:

Jv2 =

1
λ
0

 = λ

1
0
0

+

0
1
0

 = λv2 + v1 .

Similarly,
Jv3 = λv3 + v2 .

13



These relations may be written in the form

(J − λI)v1 = 0 , (J − λI)v2 = v1 , (J − λI)v3 = v2 .

The generalized eigenvectors vi are not eigenvectors (except v1). Instead they
form a Jordan chain. You have to apply J − λI to vi several times to get to
zero. A diagonalizable matrix A cannot have non-trivial Jordan chains. If A is
diagonalizable, λ is any number, x 6= 0 and (A−λI)x 6= 0, then (A−λI)px 6= 0
for any p = 1, 2, · · · . You find the Jordan structure of a matrix by finding the
eigenvalues, the actual eigenvectors (as opposed to generalized eigenvectors),
and the Jordan chains corresponding to those eigenvectors and eigenvalues.

5.3 Roots as eigenvalues of the companion matrix

It simplifies the discussion of recurrence relations to reformulate a degree s
recurrence relation for a single component sequence xn as a degree 1 recurrence
relation for an s component sequence Yn. The vector Yn is defined in terms of
the scalar sequence Xn by including X values at multiple times. These normally
would be called “lags”, but the recurrence relation (24) looks into the future
rather than the past. Therefore we define:

Yn =


Xn+s−1
Xn+s−2

...
Xn+1

Xn

 .

You can check that the scalar recurrence relation (24) is equivalent to the vector
recurrence

Xn+s

Xn+s−1
...

Xn+2

Xn+1

 =



−as−1 −as−2 · · · −a1 −a0
1 0 · · · 0 0

0 1 · · · 0
...

... 0
. . . 0

...
0 0 · · · 1 0




Xn+s−1

Xn+s−2
...

Xn+1

Xn

 (30)

In vector form, this may be written as

Yn+1 = AYn . (31)

The matrix A on the left is the companion matrix of the recurrence relation.
The top row of the matrix A on the left represents the scalar recurrence (24)
(in the form Xn+s = −as−1Xn+s−1 − · · · − a0Xn). The second row represents
Xn+s−1 as the second component of Yn+1 and the first component of Xn. The
bottom row represents Xn+1 as the last component of Yn+1 and the next to last
component of Xn. The companion matrix has the coefficients of ρ on the top
row. The rest of A zeros except for ones on the first sub-diagonal.
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We have seen that power law solutions of the scalar recurrence (24) cor-
respond to roots of the characteristic polynomial (??). They also correspond
to eigenvalues and eigenvectors of the companion matrix in (30). The scalar
sequence Xn = zn is encoded into the vector sequence

Yn =


zn+s−1

zn+s−2

...
zn

 .

This sequence satisfies
Yn+1 = zYn .

If Xn = zn satisfies the scalar recurrence, then Yn satisfies the vector recurrence
(31) so

zYn = AYn .

This, Yn is an eigenvector corresponding to the eigenvalue z. If there are n
distinct roots of ρ, then there are n distinct eigenvalues of A and the corre-
sponding eigenvectors form a basis. In particular, the eigenvectors are linearly
independent.

This process of going from a high order scalar relation to a first order system
is similar to the process of reformulating a ODE with high order derivatives as
a larger system with only first order derivatives. The language of matrices and
general linear algebra, once you’ve converted to it, turns out to be simpler,
easier to understand, and better for computing. In fact, computers find roots of
a polynomial (??) by forming the companion matrix and finding its eigenvalues.

5.4 Lyapunov’s theorem for stable matrices

Lyapunov’s theorem is a technical tool that demonstrates that linear stability
is robust. A small perturbation of a stable system should also be stable. Lya-
punov showed this, for strongly stable linear systems, by constructing a sense
in which any strongly stable dynamics is a contraction. A small perturbation of
a contraction mapping is also a contraction.

A square matrix A is strongly stable for discrete time dynamics if the eigen-
values λj of A are all properly inside the unit circle in the complex plane:

|λj | < 1 , for all j .

For example, the matrix

A =

( 1
2

1
2

− 1
2

1
2

)
has eigenvalues

λ =
1

2
± i

2
, |λ| =

√
1

4
+

1

4
=

1√
2
< 1 .
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The linear transformation that A represents is a contraction in the norm ‖·‖,
with contraction factor r < 1 if

‖Ax‖ ≤ r ‖x‖ , for all x .

For example, the A above has

A

(
x1
x2

)
=

(
1
2 (x2 + x1)
1
2 (x2 − x1)

)
.

If y = Ax, and ‖x‖ =
√
x21 + x22, then A is a contraction with contraction factor

1√
2

because

‖y‖ =

√
1

4
(x2 + x1)2 +

1

4
(x2 + x1)2

=

√
1

2
(x21 + x22)

=
1√
2
‖x‖ .

Any contraction is strongly stable (why?), but it is possible that a strongly
stable matrix is not a contraction. It is possible that a matrix is a contraction
in one norm and not in another. The following matrix is strongly stable but not
a contraction in the 2 norm:

A =

(
− 1

2 1

−1 3
2

)

This A has a double eigenvalue λ = 1
2 , which makes A strongly stable. But

A

(
1
0

)
=

(
− 1

2

−1

)
, and

∥∥∥∥(1
0

)∥∥∥∥
2

= 1 , but

∥∥∥∥(− 1
2

−1

)∥∥∥∥
2

=

√
5

2
> 1 .

We will soon show that there is a norm in which this A is a contraction.
The contraction property makes stability robust to perturbations. Let A is

a contraction and B be any matrix. If ε is small enough then A + εB is also a
contraction. The following calculation shows this:

‖(A+ εB)x‖ = ‖Ax+ εBx‖
≤ ‖Ax‖+ ε ‖Bx‖
≤ r ‖x‖+ ε ‖B‖ ‖x‖
= (r + ε ‖B‖) ‖x‖
= r̃ ‖x‖ .

No matter what ‖B‖ is, as long as r < 1 and if ε is small enough, A + εB is a
contraction because

r̃ = r + ε ‖B‖ < 1 .
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Lyapunov’s theorem5 states that if A is strongly stable then there is a posi-
tive definite quadratic form Q and an r < 1 so that

Q(Ax) ≤ r2Q(x) . (32)

Any positive definite quadratic form defines a norm

‖x‖Q =
√
Q(x) .

We saw (when discussing variational formulations of the continuous and discrete
Laplace equations) that any positive definite quadratic form is represented by
a positive definite symmetric matrix M in the sense that

Q(x) = xTMx .

Thus, the Q norm is also the M norm

‖x‖M =
√
xTMx .

It is convenient to go back and forth between the abstract quadratic form and
the more concrete SPD matrix M .

The Q norm of Lyapunov’s theorem may be defined in terms of the 2 norm of
the trajectory defined by A and x. The trajectory is the sequence x,Ax,A2x, · · · .
The 2 norm is ‖x‖22 = xTx. The 2 norm of the trajectory is

Q(x) = ‖x‖22 + ‖Ax‖22 +
∥∥A2x

∥∥2
2

+ · · · . (33)

Each of the terms on the right is a quadratic form:

‖Anx‖22 = (Anx)
T
Anx = xT

[
(An)

T
An
]
x .

Thus, the sum is a quadratic form. This leaves two questions: Why does the
sum (33) converge? and: Why does it make A a contraction?

The second question is easier to answer. The trajectory starting from Ax is
Ax,A2x · · · . If the sum converges,

Q(Ax) = ‖Ax‖22 +
∥∥A2x

∥∥2
2

+ · · · . (34)

In particular, Q norm of Ax is less than the Q norm of x (i fx 6= 0) because

Q(Ax) = Q(x)− ‖x‖22 . (35)

This alone does not quite make A a contraction in ‖Q‖Q because the same
contraction factor r has to work for any x. This is true in finite dimensions (by
“compactness of the unit ball”) but possibly otherwise.

5Lyapunov was a productive mathematician and there is more than one theorem called
Lyapunov’s theorem.
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The trick is to show that subtracting ‖x‖22 makes Q go down “a lot”, relative

to Q(x). In other words, ‖x‖22 is not too small relative to Q. To see how small
it can be relative to Q, look at the minimum of the ratio

m = min
x6=0

‖x‖22
Q(x)

.

A vector that makes the ratio as small as possible is the eivenvector of M with
largest eigenvalue µn.

Mv = µnv =⇒ Q(v) = vTMv = µnv
Tv

Thus, m = 1
µn

, and

‖x‖22 ≥
1

µn
Q(x) .

We get

Q(Ax) ≤
(

1− 1

µn

)
Q(X) ,

So, in the notation of the contraction condition (32)

‖Ax‖Q ≤ r ‖x‖Q , r =

√
1− 1

µn
< 1 .

5.5 Applying Lyapunov

The companion matrix for the linear recurrence has an eigenvalue equal to one,
so it does not satisfy the hypotheses of Lyapunov’s theorem.

6 References

On the FFT

The basic method for n = 2p is described in these two excellent basic books:
Numerical Methods, Anne Greanbaum, Timothy Chartier, p. 411
Numerical Methods, Germund Dahlquist, Åke Björk, p. 413

A good online reference for good modern FFT software and general algorithms
http://fftw.org/
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