
Numerical Methods II, Courant Institute, Spring 2024
http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2024.html
Jonathan Goodman, February, 2024

ODE solvers, Runge Kutta methods

1 The problem

This is the first class on numerical methods for the initial value problem for ODE
(ordinary differential equations). Ordinary means that the equation involves
derivatives with respect to only one variable, which we call “time” and denote
by t. The unknown is a d component vector that is a function of time, x(t) ∈ Rd.
The equation is first order if it involves first derivatives but not higher. The
vector of first derivatives is written in various ways, including “x dot”:

d

dt
x(t) = ẋ =

ẋ1(t)
...

ẋd(t)

 .

An explicit ODE system takes the form

ẋ = f(x) . (1)

The function f has as d components, one for each component of x. Each com-
ponent of f may depend on all components of x. Some examples are below.

In the initial value problem, we specify f and the value of x at some specific
time. In mathematical discussions it is common to assume that that time is
t = 0. We seek to compute x(t), as a function of t. If we are given x(0) and
want x(t) for t > 0, then x(0) is the initial value (starting value), so finding x(t)
for t > 0 is the “initial value” problem.

1.1 Higher order equations

The order of an ODE is the degree of the highest derivative. A second order
ODE involves second derivatives, as many problems that come from mechanical
systems do. The linear harmonic oscillator is one example. We use r(t) to
represent the displacement of a mass from its neutral position, m for the mass,
and k for the restoring force constant

m
d2r

dt2
= −kr . (2)

One way to put this in the generic first order form (1) is to define variables

x1(t) = r(t)

x2(t) = ṙ(t) =
dr

dt
.

1

With these definitions, one first order differential equation is just a statement
of the definition of x1 and x2:

ẋ1(t) = x2(t) .

The other differential equation comes from ẋ2 = ẍ1 = r̈. We can use the
oscillator equation (2) to solve for r̈, which leads to

ẋ2 = − k
m
x1 .

Both equations are linear, so they may be written as a single matrix/vector
differential equation:

x(t) =

(
x1(t)
x2(t)

)
, ẋ =

(
0 1
− k
m 0

)
x (3)

In the generic formulation (1), this oscillator has

f(x) =

(
f1(x)
f2(x)

)
, f1(x) = x2 , f2(x) = − k

m
x1 .

Going further with this idea, suppose there are n “particles” (which can
be electrons or stars, depending on the application) interacting with an inverse-
square force law. Particle j has mass1 mj , and position rj ∈ R3. The velocity of
particle j is ṙj ∈ R3. All the position and velocity coordinates for all n particles
make d = 6n components of x(t). The forces are a sum of an “external” force
Fe(r) and “interaction” forces for each pair Fjk(rj , rk). The Newton equation
of motion is

mj r̈j = Fe(rj) +
∑
k 6=j

Cjk
rj − rk
|rk − rj |3

(4)

The force is called “inverse-square” because its magnitude is proportional to the
inverse of the square of the distance between particles:

|Fjk| =

∣∣∣∣∣ rj − rk|rk − rj |3

∣∣∣∣∣ =
1

|rk − rj |2

The force on particle j from particle k is in the direction of the line from particle
k to particle j. It pulls particle j toward particle k in the planet application, so
Cjk > 1. The electron application has a “repulsive” force, so Cjk < 0. When
you code this, you need to calculate the sums (4). You also need to decide
whether you put all the coordinate components first or all the coordinate and
velocity components of each particle together. In the former case,x1

x2

x3

 = r1 ,

x4

x5

x6

 = r2 , · · · ,

x3n+1

x3n+2

x3n+3

 = ṙ1 , · · · .

1The parameters in actual applications have units and are not necessarily in the scale one
to ten. The mass of an electron is m ≈ 9×10−28 g. A sun sized star has m ≈ 2×1033 g.
Electrons all have the same mass while stars are all different.

2

In the other convention,x1

x2

x3

 = r1 ,

x4

x5

x6

 = ṙ1 ,

x7

x8

x9

 = r2 , · · · .

If you define Fj to be the sum on the right of (4) (the total force on particle j),
then the right side of (1) could bef1

f2

f3

 =

x3n+1

x3n+2

x3n+3

 ,

x4

x5

x6

 =

x3n+4

x3n+5

x3n+6

 , · · · ,

f3n+1

f3n+2

f3n+3

 =
1

m1
F1 , · · · .

1.2 Time dependence

An ODE system can depend on time explicitly. In this case, the generic formu-
lation (1) would change to

ẋ = f(x, t) .

Most ODE solvers designed for the time independent version (1) extend in a
simple and natural way to the time dependent version.

Alternatively, the time dependent version can be reformulated in the time
independent form by adding a component to x to represent time. If x has d
components, you create a new vector with d + 1 components with the under-
standing that the new one is time: xd+1(t) = t. The new f just advances time
at a linear rate:

ẋd+1 = 1 .

With initial condition xd+1(0) = 0, this makes xd+1(t) = t. Thus, you can
express the time dependent problem as

d

dt


x1

...
xd
xd+1

 =


f1(x, xd+1)

...
fd(x, xd+1)

1

 .

A common example is systems with specified external forcing (called “ex-
ogenous” in economics) such as the harmonically forced harmonic oscillator

mr̈ = −kr +A cos(ω0t) .

The explicit time dependence could be more “structural”. For example, consider
an oscillator where the mass is decreasing with time (think of it as a melting ice
cube attached to a spring, but there are less silly ways this can happen). You
might get

m0

1 + t2
r̈ = −kr .

3

1.3 Solution operator, flow map

The solution operator, often called flow map is the function defined by the ODE
that takes as input the initial condition and gives as output the solution at time
t. We call it Φ(x0, t) and define it by saying that if x satisfies the ODE (1) then

x(t) = Φ(x0, t) . (5)

We prefer “flow map” over “solution operator” because “operator” may suggest
that Φ is a linear function of x0, which it is not. It is common to say “map” for
a function that takes a d component vector to another d component vector. You
can wonder how this is related to the ordinary meaning of “map” as a diagram
saying where things are.

The flow map is called the fundamental solution when the ODE is linear. In
that case, there is a fundamental solution matrix S(t) so that

ẋ = Ax =⇒ x(t) = S(t)x0 . (6)

The fundamental solution has initial condition S(0) = I (why?) and satisfies
the matrix differential equation

d

dt
S(t) = AS(t) = S(t)A .

Note: matrices do not normally commute, but SA = AS, where there are several
ways to see. Each column of S(t) satisfies the vector ODE (6) (why?). You can
compute column k by solving the vector ODE with initial condition x0 = ek,
where ek is the “standard basis vector” with all zero components except for a 1
in row k.

The fundamental solution may be thought of as the exponential of the matrix
A. Just as the one component ODE ẋ = ax has solution x(t) = eatx(0), the
vector ODE (6) has solution

x(t) = S(t)x(0) = etAx0 .

By analogy with the ordinary exponential, there is a power series formula for
the matrix exponential

S(t) = etA =

∞∑
n=0

tn

n!
An . (7)

If you take the infinite series to be the definition of etA, you first check that the
sum of matrices converges, then that it satisfies the matrix ODE with initial
condition e0A = e0 = I (the last is because all the terms in the sum are zero
if t = 0 except for n = 0). For convergence, we write M = ‖A‖ and use the
inequality ∥∥∥∥ tnn!

An
∥∥∥∥ =

tn

n!
‖An‖ ≤ tn

n!
Mn .

4

The matrix sum (7) converges because (look this up in a good calculus book)
the corresponding scalar sum converges

etM =

∞∑
n=0

tn

n!
Mn .

The sum satisfies the ODE because

d

dt

∞∑
n=0

tn

n!
An =

∞∑
n=0

d
dt t

n

n!
An

=

∞∑
n=1

ntn−1

n!
An

=

∞∑
n=1

tn−1

(n− 1)!
An−1A

=

(∞∑
n=1

tn−1

(n− 1)!
An−1

)
A

d

dt
etA = etAA .

You get the version with AetA by factoring A out on the other side, as An =
AAn−1. This is one of the ways to see that A commutes with S(t).

Returning to the possibly nonlinear flow map, we use it for two purposes
here. One involves power series approximations that apply for small t

Φ(x, t) = I + tΦ1(x) + t2Φ2(x) + · · ·+ tnΦn(x) +O(tn+1) . (8)

Each of the terms Φ1, Φ2, etc. has an expression in terms of f(x) and its
derivatives. The first few are simple but already Φ4 is complicated. These
expressions, and the calculations used to derive them, are the basis of Runge
Kutta schemes for solving the ODE. You need to calculate up to Φn to derive a
Runge-Kutta scheme of order n, which explains why those are hard to derive.
Despite the cumbersome derivations, the methods themselves are not extremely
complicated, and they can be extremely accurate.

Our second use of flow maps is sensitivity analysis. This tells you how
sensitive the solution at time t is to small changes in the initial data. We
use the following clumsy (apologies) notation. We fix a starting point x∗0 and
its corresponding trajectory, x∗(t). To say this in a different way, we look at
Φ(x∗0 + y) for small y. The sensitivity matrix is the Jacobian matrix, in various
notations

M(x∗0, t) =
∂x(t)

∂x(0)
= ∂x0Φ(x0, t) .

Another notation for the Jacobian matrix of partial derivatives will prove helpful
in what is coming below. Suppose g(x) = g1(x), · · · , gm(x)) is m functions of d

5

variables. The Jacobian matrix may be denoted simply by dg. This is an m×d
matrix with entries

(dg)jk =
∂gj
∂xk

.

The first derivative Taylor approximation is

g(x+ y) ≈ g(x) + dg(x) y , if y is small.

A less informal statement is that if g is twice differentiable, then

‖g(x+ y)− [g(x) + dg(x) y]‖ ≤ C ‖y‖ , if ‖y‖ is small enough.

In this notation, the sensitivity matrix is M(x∗0, t) = dΦ(x∗0, t).
This sensitivity may be found by linearizing the nonlinear dynamics (1)

about the “baseline” trajectory x∗(t). We subtract the baseline trajectory from
both sides and use first order Taylor approximations to get

d

dt
(x(t)− x∗(t)) + ẋ∗(t) = f(x∗ + (x− x∗))

= f(x∗) + [f(x∗ + (x− x∗))− f(x∗)]

d

dt
(x(t)− x∗(t)) = [f(x∗ + (x− x∗))− f(x∗)]

d

dt
(x− x∗) ≈ df(x∗) (x− x∗)

This suggests that the sensitivity matrix satisfies the linearized2 equation

Ṁ(x∗0, t) = df(x∗(t))M(x∗0, t) . (9)

In this equation, the baseline trajectory x∗0(t) is already known. We could
emphasize this by defining the linearized dynamics matrix

A(t) = df(x∗(t)) .

The sensitivity equation (9) is seen to be a linear ODE, but with time dependent
coefficients

Ṁ = A(t)M .

2 Time stepping, the setup

Many solution algorithms for the ODE initial value problem use time stepping.
Runge Kutta3 time stepping uses approximations to the flow map (5) that are

2 Linearization means replacing a nonlinear equation with a linear equation that approxi-
mates it, generally using first derivative approximations.

3Karl Runge was the professor of applied mathematics at the university of Göttingen in
the early 1900′s. He had several students who worked on time stepping methods of increasing
complexity. Heun developed the second order method, and Kutta found the more general
fourth order method described here. Runge is also know for his work on polynomial inter-
polation, including his discovery of the Runge phenomenon. In English, his name is often
pronounced like “rung-ga”.

6

accurate when t is small. We choose a small ∆t and define discrete times

tn = n∆t .

Computer solution is the sequence Xn, which approximates the true solution at
the discrete times:

Xn ≈ x(tn) .

This approximation uses an approximate flow map Ψ(x,∆t) in place of the exact
one to “update” the solution from time tn to time tn+1 = tn + ∆t.

x(tn+1) = Φ(x(tn), ∆t) (10)

Xn+1 = Ψ(Xn, ∆t) (11)

Ψ(x,∆t) = Φ(x,∆t) +O(∆tp+1) . (12)

Both exact and approximate solutions use the exact initial data: x(0) = x0,
X0 = x0. Equation (10) says that the exact solution is updated using the exact
flow map. This is the definition of the exact flow map. Equation (11) says that
the numerical approximation solution is updated using the approximate flow
map Ψ. In Runge Kutta methods, Ψ is computed using the f from the ODE
(1). The number of stages in the Runge Kutta method is the number of times
f is used in the definition of Ψ. This is described below. Equation (12) defines
p + 1 as the local order of accuracy of the approximate flow map. We will see
that the global error is order ∆tp. For this reason, p is the order of accuracy of
the approximation. We will describe various approximate flow maps in Section
3.

The simplest method is the forward Euler method, which has p = 1. It’s
approximate flow map is

Ψ(x,∆t) = x+ ∆tf(x) . (13)

The corresponding forward Euler time stepping method is

Xn+1 = Xn + ∆tf(Xn) . (14)

We will first see that the forward Euler method satisfies the local error equation
(12) with p = 2. Then we will define a version of “global error” and show that
the global error is on the order of ∆t. This will show that the order of accuracy
is p = 1, which is usually called first order accuracy.

The local accuracy (11) follows from a Taylor approximation

x(∆t) = x0 + ∆t ẋ(0) +O(∆t2) .

The ODE (1) gives the relation ẋ = f(x), so

x(∆t) = x0 + ∆t f(x0) +O(∆t2) .

This implies that the forward Euler approximate flow map (13) satisfies the
local error equation (11) with p+ 1 = 2.

7

3 Runge Kutta methods

Runge Kutta methods are a family of approximate flow maps, mostly higher
order, which means p > 1. As we have seen in earlier classes, higher order accu-
racy generally means getting the desired accuracy with less work. The higher
order methods are more complicated to derive but not hard to code. Subsec-
tion 3.1 gives some motivation and introduces the Taylor series calculations
involved. The following subsections extend these to third order so you can see
how the derivations work, and possibly understand why many people find them
distasteful.

Runge Kutta methods are multi-stage methods. Each stage requires evalu-
ating f(y) for some y. In most cases, evaluating f is more expensive than the
other parts of the algorithm. This implies that the computer time per time step
is proportional to the number of stages. A four stage method (common) is four
times more work per time step than the forward Euler method. It is a “win”
(less computer time for the ultimate answer) if you get the required accuracy
with a four times larger ∆t, which means four times fewer time steps.

3.1 A second order method

One such method is the predictor/corrector trapezoid rule. The trapezoid rule
for integration is ∫ ∆t

0

y(t) dt ≈ ∆t

2
(y(0) + y(∆t)) . (15)

When working with ODE (as we will see a lot in when we do multi-step methods
in Class 7) it can help to write the integral formulation of the ODE, which is

x(∆t) = x(0) +

∫ ∆t

0

ẋ(t) dt

= x0 +

∫ ∆t

0

f(x(t)) dt . (16)

The trapezoid rule approximation (15) applied to the integral formulation (16)
gives the approximation

x(t+ ∆t) ≈ x0 +
∆t

2
[f(x0) + f(x(∆t))] .

This leads to an ODE solver called the trapezoid rule

Xn+1 = Xn +
∆t

2
[f(Xn) + f(Xn+1))] . (17)

This method is implicit because it defines Xn+1 implicitly through an equation
but does not give an explicit formula for it. This structure is seen more clearly
if you put all the Xn+1 terms on the left side:

Xn+1 −
∆t

2
f(Xn+1) = Xn +

∆t

2
f(Xn) . (18)

8

To find Xn+1, you have to solve the equation

g(Xn+1) = a , g(y) = y − ∆t

2
f(y) , a = Xn +

∆t

2
f(Xn) .

The equation is trivial if ∆t = 0 and easy to solve by iteration if ∆t is small
(g being a small perturbation of the identity function). Implicit methods are
useful despite the extra complexity of equation solving at each time step, but
we do not discuss them more until a future class.

Predictor/corrector methods are derived from implicit methods by using ap-
proximations to Xn+1 on the left side of (18). In this case, we just use the
forward Euler prediction

X̃n+1 = Xn + ∆tf(Xn) . (19)

Then we use X̃n+1 in place of Xn+1 on the right of (17), which gives

Xn+1 = Xn +
∆t

2

[
f(Xn) + f(X̃n+1))

]
. (20)

This gives a two stage method, which means two stages per time step. In the
first stage we use (19) to calculate X̃n+1. This requires one evaluation of f . In
the second stage we use (20) to evaluate Xn+1. This requires another evaluation
of f .

3.2 Explicit multi-stage methods

The predictor-corrector method of (19) and (20) is an example of a general
explicit multi-stage method (also called Runge Kutta method). An explicit
multi-stage method is an approximate flow map Ψ(X,∆t) that is defined using
a fixed number of evaluations of f and some linear vector operations. We present
the general formalism here, then illustrate the calculations behind higher order
methods in Subsections 3.3 and 3.4.

Each stage j of an explicit Runge Kutta method creates a new vector kj ,
which is f evaluated at some point determined by the starting point X and the
previous stage evaluations ki. The two stage predictor-corrector trapezoid rule,
in this notation, is

k1 = f(X) (21)

k2 = f(X + ∆t k1) (22)

Ψ(X) = X + ∆t
(

1
2k1 + 1

2k2

)
. (23)

The quantity k1 is on the right side of (19). The argument of f in the second

Runge Kutta state (22) is X̃n+1. A Runge Kutta method takes a step that is a
linear combination of the stage values. In the example, the linear combination
has weights 1

2 , which is corresponds to (20).
A general method of this type is defined by coefficients βij and αj . Stage j

computes kj in terms of the previous stage values ki using

kj = f(X + ∆t(β1jk1 + · · ·+ βj−1,jkj−1)) . (24)

9

In the example, (21) is the first stage (j = 1 with no i < 1 terms). The second
stage corresponds to (22). It has j = 2 and only i = 1 on the right of (24). The
step is a linear combination of the stages, with weights αj :

Ψ(X) = X + α1k1 + · · ·+ αnkn . (25)

There are implicit Runge Kutta methods. One kind of implicit method has
implicit stages, where you have to solve equations to compute kj once the ki for
i < j are known. Such methods are called DIRK, for “diagonally implicit Runge
Kutta”. It is also possible to consider fully implicit Runge Kutta methods, in
which each kj is defined in terms of all the other ki.

3.3 Two stage Runge Kutta methods

Explicit Runge Kutta methods may be found using Taylor series calculations
related to the exact and approximate flow maps Φ and Ψ. The exact flow map
(5) has small t (i.e., short time) Taylor approximations

x(t) = Φ(x0, t) = x0 + tẋ0 + t2 1
2 ẍ0 + · · ·+ tp

1

p!

(
d

dt

)p
x(0) +O(tp+1) . (26)

Each of the derivatives on the right depends on f and derivatives of f . The
approximate flow map also has Taylor approximations, with coefficients that we
call yj :

Ψ(x0, t) = x0 + ty1 + t2y2 + · · ·+ tpyp +O(tp+1) . (27)

The method has order of accuracy p if the coefficients match up to order tp.
This means that for k = 1, · · · , p, we arrange that

yk =
1

k!

(
d

dt

)k
x(0) . (28)

This turns out to be lots of algebra. Section 4 has some “review” of Taylor
expansions, which can be hard to get right for higher order expansions with
many variables.

The one stage forward Euler method is first order accurate because ẋ = f(x).
It is not second order accurate because forward Euler has y2 = 0, which is not
ẍ unless x(t) is a linear function of t.

We achieve second order accuracy by finding a formula for ẍ and choosing a
two stage method so that y1 = f(x) and y2 = ẍ, which involves some algebra.
We can find a formula for ẍ by taking the time derivative of ẋ = f(x) and using
the chain rule.

ẍ =
d

dt
ẋ

=
d

dt
f(x(t))

= f ′(x)ẋ

ẍ = f ′(x)f(x) . (29)

10

This expression involves the Jacobian matrix f ′, but this is only for the deriva-
tion. Runge Kutta methods themselves uses only f , not derivatives.

A two stage explicit Runge Kutta method has the form

k1 = f(x) (30)

k2 = f(x+ tβk1) (31)

Ψ(x, t) = x+ t (α1k1 + α2k2) (32)

We want a Taylor expansion for Ψ. The formula (30) is already a full Taylor
expansion for k1. An expansion for k2 to the necessary order requires just the
first order expansion of f :

k2 = f(x+ tβk1)

= f(x) + f ′(x) (tβk1) +O
(
‖tβk1‖2

)
= f(x) + βtf ′(x)f(x) +O

(
t2
)

The expansion for Ψ comes from substituting this into the Ψ formula (32)

Ψ(x, t) = x+ t
[
α1f(x) + α2

(
f(x) + βtf ′(x)f(x) +O

(
t2
))]

= x+ t (α1f(x) + α2f(x)) + t2α2βf
′(x)f(x) +O

(
t3
)
.

This gives the Taylor expansion (27) with

y1 = (α1 + α2) f(x)

y2 = α2βf
′(x)f(x) .

Thus, the k = 1 accuracy condition (28) is satisfied if

α1 + α2 = 1 . (33)

Because of (29), second order accuracy condition (k = 2) is satisfied if

α2β =
1

2
. (34)

There are many ways to satisfy these two conditions. You can take α1 =
α2 = 1

2 and β = 1. This gives the predictor-corrector version of the trapezoid
rule from Subsection 3.1. You can take α1 = 0, α2 = 1 and β = 1

2 . This is
a predictor-corrector version of the midpoint rule of integration. The midpoint
rule approximation of the integral on the right of (16) is∫ t

0

f(x(s)) ds = tf(x(1
2 t)) +O(t3) .

We can use forward Euler to make the prediction

x(1
2 t) ≈ x(0) + 1

2 tf(x(0)) .

11

This gives the two stage method

k1 = f(x)

k2 = f(x+ 1
2 tk1)

Ψ(x, t) = x+ tk2 .

This is the method with β = 1
2 , α1 = 0 and α2 = 1. A general two stage explicit

Runge Kutta method has three free parameters (β, α1, α2). The method is
second order accurate if the two constraints (33) and (34) are satisfied. With
two equations and three unknowns, you expect that there is a one parameter
family of solutions. That is the case here.

3.4 Three stage Runge Kutta methods

Please read Section (4) before going through the algebra here. This explains the
summation convention that we use here. The summation convention saves some
writing. More importantly, it makes the calculations clearer (in my opinion).

The general three stage explicit Runge Kutta method is

k1 = f(x)

k2 = f(x+ tβ11k1)

k3 = f(x+ t(β21k1 + β22k2))

Ψ(x, t) = x+ t (α1k1 + α2k2 + α3k3) . (35)

Keeping one more term in Taylor approximations will lead to one more order
of accuracy, beyond second order. We expand k2 to this order. We write fi
instead of fi(x), etc., to save space.

k2,i = fi(x) + tβ11
∂fi
∂xj

fj(x) + t2
1

2
β2

11

∂2fi
∂xj∂xk

fjfk +O(t3) . (36)

Expanding k3 in this way seems to give a giant mess of algebra, because it asks
for the products of entries of k2, which themselves involve products of entries
of f . This would lead to products of four components of f and many indices.

Therefore, before substituting the k2 expansion into the k3 expansion, we
figure out how accurate the k2 approximations need to be in order for the final
error term to be order t3. We do not worry about k1 because k1 = f is simple
and exact. First, k2 occurs in the formula for k3 multiplied by t. Therefore, if
the error in the k2 is order t2, the resulting k3 error will be order t3. To get this
right, we define notation for the quantity in parentheses multiplying t:

l = β21k1 + β22k2 .

We use k1 = f and, for k2, the approximation (36) keeping the order t term and
taking the error term to be order t2. This leads to approximations

li = β21fi + β22fi + tβ22β11
∂fi
∂xj

fj +O(t2) (37)

li = β21fi + β22fi +O(t) . (38)

12

In terms of l, the Taylor approximation of k3 is like the one for k2:

k3,i = fi + t
∂fi
∂xj

lj + t2
1

2

∂2fi
∂xj∂xk

lj lk +O(t3) .

We use the approximation (37) for the order t term and the simpler approxima-
tion (38) for the order t2 term. This insures that the overall error will be order
t3. To avoid an index conflict (see the end of Section4) we re-write (37) as

lj = (β21 + β22) fj + tβ22β11
∂fj
∂xk

xk +O(t2) .

The result is

k3,i = fi + t (β21 + β22)
∂fi
∂xj

fj

+ t2β22β11
∂fi
∂xj

∂fj
∂xk

fk + t2
1

2
(β21 + β22)

2 ∂2fi
∂xj∂xk

fjfk

+O(t3) .

Finally, we use (35) and assemble all the terms just calculated. We organize
the resulting terms by powers of t.

Ψ(x, t)i = xi + t (α1 + α2 + α3) fi

+ t2
[
α2β11

∂fi
∂xj

fj + α3 (β21 + β22)
∂fi
∂xj

]
+ t3

[
α2

1

2
β2

11

∂2fi
∂xj∂xk

fjfk + α3β22β11
∂fi
∂xj

∂fj
∂xk

fk + α3
1

2
(β21 + β22)

2 ∂2fi
∂xj∂xk

fjfk

]
+O(t4) .

For the small t approximation to the exact flow map, we use (26), with the third
derivative term given by (44) below.

Φ(x, t)i = xi + tfi + t2
1

2

∂fi
∂xj

fj

+ t3
1

6

[
∂2fi

∂xj∂xk
fj(x)fk(x) +

∂fi
∂xj

∂fj
∂xk

fk(x)

]
+O(t4) .

The method will be third order accurate if the corresponding terms in Ψ and Φ
agree up to third order.

The order t agreement is

fi = (α1 + α2 + α3) fi .

This will hold no matter what f is provided the coefficients on the two sides
agree. Therefore, the first accuracy condition is

1 = α1 + α2 + α3 . (39)

13

The order t2 terms agree if

1

2

∂fi
∂xj

fj = [α2β11 + α3 (β21 + β22)]
∂fi
∂xj

fj .

The part that depends on f is the same on both sides. Therefore, we get second
order accuracy if the coefficients satisfy

1

2
= α2β11 + α3 (β21 + β22) . (40)

These two conditions are simple extensions of the corresponding conditions for
two stage methods, (33) and (34).

The order t3 terms agree if

1

6

[
∂2fi

∂xj∂xk
fj(x)fk(x) +

∂fi
∂xj

∂fj
∂xk

fk(x)

]
= α2

1

2
β2

11

∂2fi
∂xj∂xk

fjfk + α3β22β11
∂fi
∂xj

∂fj
∂xk

fk + α3
1

2

∂2fi
∂xj∂xk

fjfk

Here, there are two ways f appears:

∂2fi
∂xj∂xk

fj(x)fk(x) , and
∂fi
∂xj

∂fj
∂xk

fk(x) .

If the combination matches for every f , the parts multiplying these two terms
must match separately. This leads to two conditions:

1

6
=

1

2
α2β

2
11 +

1

2
α3 (β21 + β22)

2
(41)

and
1

6
= α3β11β22 . (42)

This is a lot of work, but the reward is a third order accurate method.
More correctly, there are many ways to make a third order method. There

are six parameters and only 4 equations. For example, you could imitate the
second order predictor-corrector trapezoid rule by taking only k3 in the end.
This means α1 = α2 = 0 and α3 = 1.

4 Multi-variate multi-component Taylor approx-
imations

These formulas are simple in principle but it can be a challenge to get the algebra
right. One approach that works for me is the Einstein summation convention.
The convention is that you don’t write the summation symbol and assume that
the expression is summed over any repeated variable. For example

xkyk means
∑
k

xkyk .

14

The sum on the right is assumed to be over “all relevant values” of k. In this
case, if x has n components, it is assumed that y also has n components, so

xkyk means

n∑
k=1

xkyk .

As a more complicated example, suppose A is an n×m matrix with entries
aij and B is an m × l matrix with entries bjk. Suppose x is an l component
vector and y = Bx and z = Ay = ABx. The summation convention writes
y = Bx and z = Ay as

yj = bjkxk , zi = aijyj .

You can substitute one expression into the other to get

zi = aijbjkxk which means zi =

m∑
j=1

l∑
k=1

aijbjkxk .

You can write this as

zi = (aijbjk)xk = cikxk , with cik = aijbjk . (43)

This gives a formula for the elements of the matrix product C = AB.
The summation convention is a convenient way to express the chain rule.

Suppose t is a single parameter and x(t) is a smooth n component vector.
Suppose u(x) is a one component function of n variables. The chain rule, first
without then with the summation convention, is

d

dt
u(x(t)) =

n∑
j=1

∂u

∂xj
ẋj =

∂u

∂xj
ẋj .

If f(x) also has n components, then

d

dt
fi(x(t)) =

∂fi
∂xj

ẋj .

If ẋ = f(x), this becomes

d

dt
fi(x(t)) =

∂fi
∂xj

fj(x) .

The jacobian matrix f ′ has entries

(f ′)ij =
∂fi
∂xj

.

Using the jacobian matrix allows us to write the first time derivative formula in
matrix/vector form and eventually get (29).

15

The summation convention derivation starts with

ẋj =
d

dt
xj = fj(x) .

Then the chain rule gives (29):

ẍi =
d

dt
ẋi

=
d

dt
fi(x)

=
∂fi
∂xj

ẋj

=
∂fi
∂xj

fj(x) .

The matrix/vector form (29) is simpler.
The next derivative shows the ease of working with the summation conven-

tion and the laws of calculus. The third derivative calculation is (using the
product and chain rules)(

d

dt

)3

xi =
d

dt
ẍi

=
d

dt

(
∂fi
∂xj

fj(x)

)
=

(
d

dt

∂fi
∂xj

)
fj(x) +

∂fi
∂xj

(
d

dt
fj(x)

)
=

(
∂2fi

∂xj∂xk
ẋk

)
fj(x) +

∂fi
∂xj

(
∂fj
∂xk

ẋk

)
(
d

dt

)3

xi =
∂2fi

∂xj∂xk
fj(x)fk(x) +

∂fi
∂xj

∂fj
∂xk

fk(x) . (44)

Both terms on the right are double sums, summing over j and k, but the sum-
mation convention says not to write the summation symbols. The two terms
have similarities and differences. Both terms have three f factors “on top” and
two x factors “on the bottom”. The first term achieves this using one second
derivative while the second factor uses two first derivatives.

The multi-dimensional Taylor approximations are

u(x+ y) ≈ u(x) +
∂u

∂xi
yi +

1

2

∂2u

∂xi∂xj
yiyj +

1

6

∂3u

∂xi∂xj∂xk
yiyjyk + · · · .

If t is a small number, there are error bounds such as

u(x+ ty) ≈ u(x) + t
∂u

∂xi
yi + t2

1

2

∂2u

∂xi∂xj
yiyj +O(t2) .

16

Sometimes you need to change the names of indices when you substitute one
expression into another. In the matrix multiplication example above, suppose
we had

yi = bijxj , zi = aijyj .

To express z in terms of x, we need an expression for yj . If we just take i = j
in the yi expression, we get the non-sensical yj = bjjxj . Instead, we change
the names of the indices to avoid conflict of index names. Here, we could try
changing yi = bijxj to the equivalent yj = bjixi. This does not work because
the i index in xi conflicts with the i index in zi. Therefore, we change one of
them to k. We could choose zk = akjyj . With this, the substitution has no
index conflicts and we get

zk = akjbjixi .

This expression is equivalent to the one we had earlier (43).

5 Convergence theory

Convergence theory starts with proving that the numerical “solution” converges
to the actual solution in the limit ∆t→ 0. The max error up to time T is

E∆t,T = max
tn≤T

|Xn − x(tn)| . (45)

The method converges if E∆t,T → 0 as ∆t→ 0 for any positive T . The method
has order of accuracy p if the error has order ∆tp. That means that there is a
CT so that if ∆t is small enough, then

E∆t,T ≤ CT∆tp . (46)

Every theorem has hypotheses. One hypothesis is that the scheme has formal
accuracy p. The other hypothesis is that the scheme has a Lipschitz property
related to the Lipschitz property of the ODE. Here are some examples that
explain the complexity of the hypotheses. One is “blow up”. The solution of a
nonlinear ODE can blow up at some “blow up time” T ∗. An example of that
involves the ODE (probably discussed in an undergrad ODE class)

ẋ = x2 .

The solution with x(0) = x0 is (check: this satisfies the ODE and the initial
condition)

x(t) =
1

1
x0
− t

.

This solution blows up at T ∗ = 1
x0

(assuming x0 > 0) in the sense x(t)→∞ as
t → t∗. Clearly the convergence theorems cannot apply unless T < T ∗. A less
subtle example is

ẋ = log(x) .

17

This ODE makes sense only if x > 0. A theorem that applies to this case must
restrict the range of x where the hypotheses apply – they cannot apply “for all
x”.

A function f is Lipschitz continuous in a domain Ω if there is an L (the
Lipschitz constant so that if x and y are in Ω, then

|f(x)− f(y)| ≤ L |x− y| .

A function does not have to be differentiable to be Lipschitz continuous. For
example, f(x) = |x| is Lipschitz continuous with Lipschitz constant L = 1
but f ′(0) does not exist. But if f is differentiable in some domain Ω that
contains the line segment from x to y, and if ‖f ′(x)‖ ≤ L for all x in Ω, then4

|f(x)− f(y)| ≤ L |x− y|.
With this motivation, we assume the exact trajectory x(t) exists (does not

blow up) up to and including time T . For any positive (probably small) ρ, we
define a domain Ωρ,T to be the “width ρ neighborhood” of the trajectory. That
means that y ∈ Ωρ,T if |y − x(t)| ≤ r for some t between 0 and T (inclusive). We
assume that f(x) is defined for all x in this neighborhood and that ‖f ′(x)‖ ≤ L
for all such x. More simply, we suppose f is good in a small neighborhood of
the trajectory.

Explicit Runge Kutta methods all have the form

Ψ(x,∆t) = x+ ∆tΨ̃(x,∆t) , (47)

where Ψ̃ is found by “iterating” f (i.e., applying f to linear combinations of
other values of f). Such a function has a derivative Lipschitz bound because of
the chain rule. For example, if y = f(x+β∆tf(x)), then the derivative satisfies
(a chain rule calculation)

∂y

∂x
= f ′(x+ β∆tf(x)) [I + β∆tf ′(x)] .

If x is “on the trajectory” (that is, x = x(t) for some t ∈ [0, T]) and ∆t is small
enough so that |β∆tf(x)| ≤ ρ, then∥∥∥∥∂y∂x

∥∥∥∥ ≤ L(1 + β∆tL) .

Therefore it makes sense to assume that there is an M so that for all x ∈ Ωρ,T
and all ∆t small enough, ∥∥∥∥∥∂Ψ̃(x,∆t)

∂x

∥∥∥∥∥ ≤M . (48)

4This follows from the 1D calculus theorem using a well-known trick. Define u(t) = f(x+
t(y−x)). Then u(0) = f(x) and u(1) = f(y), and (chain rule) u′(t) = f ′(x+ t(y−x))(y−x).
Since ||f ′(y − x)| ≤ ‖f ′|·|y−x|, this implies that |u′(t)| ≤ L |y − x|. Therefore |f(y)− f(x)| =
|u(1)− u(0)| ≤ L |y − x|.

18

This is true for explicit Runge Kutta methods.
Here is a convergence proof that follows the stability plus consistency proof

template. The idea is that the exact solution approximately satisfies the dis-
crete equations (12). We think of this as saying that the exact solution is a
perturbation5 of the approximate solution, the perturbation being the residual
of the scheme. We write ∆tp+1r(x,∆t) for the residual, with r being defined by
a slightly refined version of (12)

x(t+ ∆t) = Ψ(x(t),∆t) + ∆tp+1r(x,∆t) . (49)

For example, we found that forward Euler has residual

∆t2r(x,∆t) , r(x,∆t) =
1

2
f ′(x)f(x) +O(∆t) .

We make the “formal order of accuracy” hypothesis that there is an overall
bound R that works for all x ∈ Ωρ,T and small enough ∆t:

|r(x,∆t)| ≤ R . (50)

We combine (47) with (49) and write

x(tn+1) = x(tn) + ∆tΨ̃(x(tn),∆t) + ∆tp+1r(x(tn),∆t)

Xn+1 = Xn + ∆tΨ̃(Xn,∆t) .

We use the definitions

Dn = x(tn)−Xn , x(tn) = Xn +Dn .

These combine to give

Dn+1 = Dn + ∆t
[

Ψ̃(Xn +Dn)− Ψ̃(Xn)
]

+ ∆tp+1r(x(tn),∆t) .

Given the assumptions, this leads to the inequality

|Dn+1| ≤ (1 +M∆t) |Dn|+R∆tp+1 . (51)

This inequality incorporates consistency in that the forcing term is on the order
of ∆tp+1. It incorporates stability in that the error is amplified in one time step
by only 1 +M∆t.

A little “analytical technique” (clever inequalities) turns the error propaga-
tion bound (51) into an error bound of the form (46). One observation is that
Dn cannot be more than the solution of the error propagation equality

D̃n = (1 +M∆t) D̃n +R∆tp+1 . (52)

5Perturbation means “small change”. More precisely, a small change with a small cause. If
g(x) = 0 and g(y) = ε, we say that ε is a small perturbation in the equation which (hopefully)
makes y a small perturbation of x. In ordinary English, a person trying to study might be
“perturbed” by a small noise. This suggests that the person not only is influenced by the
noise, but is annoyed by it. Fortunately, mathematics uses the term “perturbation theory”
rather than “annoyance theory”.

19

Next, observe that this is the forward Euler approximation to the differential
equation

ḋ = Md+R∆tp .

This step is where the “local truncation error” of order ∆tp+1 is turned into
a “global error” (simply, error) of order ∆tp. The solution to the ODE, with
initial condition d(0) = 0 (which we should have said all along: you start with
the exact initial data X0 = x(0)) is (using methods from ODE 101, check this)

d(t) =
R∆tp

M

(
eMt − 1

)
. (53)

This is a good estimate of the solution of the error propagation equality (52)
when ∆t is small, but is it an upper bound for it?

Yes, because of the inequality 1+s ≤ es, which is true for any s, or for a more
“fundamental” reason that takes longer to explain. If we assume (induction

hypothesis for induction on n) that D̃n ≤ d(tn), then we first get d(tn+1) ≤(
eMt − 1

)
d(tn) +R∆tp+1 and then D̃n ≤ d(tn).

Conclusions

• Order ∆tp+1 local truncation error leads to order ∆tp overall error.

• The error bound (53) grows exponentially with t so it may not be useful
for long time simulations.

• The stability proof does not use detailed properties of the scheme or the
ODE. The same proof would work for any explicit one-step method.

6 Error expansion, modified equation

A more refined analysis of the error can lead to post-processing tricks that
lead to more accurate solutions. The asymptotic error expansion is a tool for
this. The modified equation is a modification of the ODE system so that the flow
map for the modified equation is closer to the trajectory of the ODE solver. The
extra terms in the modified equation can explain slow but qualitative differences
between the true ODE trajectory and the approximate trajectory produced by
the solver.

6.1 Asymptotic expansion

An asymptotic expansion is a sequence of approximations with increasing accu-
racy. Asymptotic means that we do not know whether the sequence converges
to the thing being approximated. Many expansions that do converge are used
as asymptotic expansions. The fact that the sequence converges in the limit of
infinitely many terms is not relevant if you only use the first few. If we only
need the asymptotic expansion property, it is not necessary to know whether the
sequence converges. In many interesting cases, the sequence does not converge.

20

Consider a function A(h) that depends on a “small parameter” h. In appli-
cations here, h will be ∆t (and later ∆x). An asymptotic expansion in powers
of h is written

A(h) ∼ A0 + hA1 + h2A2 + · · · . (54)

The asymptotic expansion property is that for any p, the terms up to order p
give an approximation of A(h) that is accurate to order p. Technically, if p ≥ 0
is an integer, then there is an hp > 0 and a Cp so that

|A(h)− (A0 + · · ·+ hpAp)| ≤ Cphp+1 , if |h| ≤ hp . (55)

This is the same as, for every p,

A(h) = A0 + · · ·+ hpAp +O(hp+1) .

The “∼” symbol in (54), rather than “=”, means that for any given h 6= 0 we
do not say that the sum on the right converges to A(h), or converges at all.

Taylor expansions are asymptotic expansions in this sense. If A(h) = f(x+
h), then An = 1

n!f
(n)(x). One of the error bounds for Taylor approximations

(Calculus II or Calculus III) is

f(x+ h) =

p∑
n=0

1

n!
f (n)(x)hn +

1

(n+ 1)!
f (n+1)(ξ)hp+1 ,

for some ξ between x and x+ h .

An asymptotic expansion that does not converge

Define

A(h) =

∫ ∞
0

e−
x
h

1 + x
dx .

When h is small the exponential is small unless x is very close to zero. This
suggests that the small h behavior of A(h) is determined by the small x behavior
of 1

1+x . For small x (actually, for any x less than 1) this is given by a convergent
geometric series

1

1 + x
= 1− x+ x2 − · · ·+ (−1)nxn + · · · .

This suggests that, for small h,

A(h) ≈
∫ ∞

0

e−
x
h

(
1− x+ x2 · · ·

)
dx .

21

The integral of an exponential against a power of x is∫ ∞
0

e−ax dx =
1

a∫ ∞
0

xe−ax dx =
1

a2∫ ∞
0

x2e−ax dx =
2

a3

...∫ ∞
0

xne−ax dx =
n!

an+1

If you substitute these into the approximation for A(h) without worrying about
convergence, you get (with a = 1

h)

A(h) ≈ h− h2 + 2h3 − · · ·+ (−1)nn!hn+1 + · · · . (56)

It is possible to prove (if you “remember” the tricks of mathematical analysis)
that this is an asymptotic expansion in the sense of (55), with A0 = 0 and
Ap = (−1)p−1(p − 1)!. However, the infinite sum diverges for any h, because
eventually n! grows faster than hn+1.

The point of this example is not to make you worry about whether an asymp-
totic expansion converges. It’s the opposite. This expansion diverges but it is
just as useful for the purposes here as asymptotic expansion based on Taylor
series that probably do converge. The point is to convince you not to worry
about whether an asymptotic expansion converges.

6.2 Asymptotic error expansion

An asymptotic error expansion is an asymptotic expansion for the error in pow-
ers of ∆t. Many computational tricks require asymptotic error expansions to
exist. Some of those tricks actually calculate a term or two quantitatively. The
proof that such expansions exist gives a method for calculating the terms, but
this is so complicated that it is (almost) never used in practice directly. More
bluntly, it is important to know that asymptotic error expansions exist, but it
is less important to know why they exist.

An asymptotic error expansion for an ODE solver of order p has the form

Xn ∼ x(tn) + ∆tpyp(tn) + ∆tp+1yp+1(tn) + · · · . (57)

This expansion is based on an asymptotic expansion for the approximate flow
map, which has (local truncation) error of order ∆tp+1:

Ψ(x,∆t) ∼ Φ(x,∆t) + ∆tp+1Ψp+1(x,∆t) + ∆tp+2Ψp+2(x,∆t) + · · · . (58)

22

The derivations of the various Runge Kutta methods make it clear that these
flow map expansions exist, and that the formula for Ψp+1 is likely to be com-
plicated and not very informative.

We justify the asymptotic expansion (57) informally by showing how to find
the leading error term yp. A full proof would include arguments like those in
Section 5. In these calculations we leave out the ∆t argument all the time
and other arguments some of the time to simplify expressions. We also use
the facts that Ψ(x,∆t) = x + ∆tΨ̃(x,∆t), so Ψ′(x)y = y + ∆tΨ̃′(x)y, and
x(tn+1) = Φ(x(tn)).

Xn+1 = Ψ(Xn)

= Ψ(x(tn) + ∆tp yp(tn) + · · ·)
≈ Ψ(x(tn)) + ∆tp Ψ′(x(tn)) yp(tn) + · · ·

x(tn+1) + ∆tpyp(tn+1) ≈ Φ(x(tn)) + ∆tp Ψ′(x(tn)) yp(tn) + ∆tp+1Ψp+1(x(tn)) + · · ·

∆tpyp(tn+1) ≈ ∆tp Ψ′(x(tn)) yp(tn) + ∆tp+1Ψp+1(x(tn)) + · · ·

yp(tn) + ∆tẏp + · · · ≈ yp(tn) + ∆tΨ̃′(x)yp + ∆tΨp+1(x(tn)) + · · ·

ẏp ≈ Ψ̃′(x) yp + Ψp+1(x) .

Finally, to leading order Ψ(x) = x+∆tf(x), so Ψ′(x) = I+∆tf ′(x). Therefore,

to leading order, we may replace Ψ̃′(x) with f ′. When you do that, none of
the leading terms depend on ∆t. Therefore, all the ∆t corrections vanish in the
limit and you are left with

ẏp(t) = f ′(x(t)) yp(t) + Ψ̃′(x(t)) . (59)

This is the leading order error propagation equation. It is the original ODE (1)
linearized about the exact trajectory x(t) and with the leading order truncation
error as forcing.

7 Adaptive methods

A fancy computational algorithm tries to get the desired accuracy with the least
work. For an ODE solver, this could mean integrating to a specified time T using
the smallest number of time steps required to meet the specified accuracy. It
is likely that “users” (the people who want the answer) does not know enough
about the problem to choose ∆t appropriately. They might not know whether a
specified time step was small enough, or maybe smaller than necessary. Adaptive
methods use the computer to help choose ∆t.

23

8 References

On the FFT

The basic notation for Runge Kutta methods is in
Numerical Methods, Germund Dahlquist, Åke Björk

A more recent treatment that uses more modern terminology, and an excellent
collection of references, is in
A First Course in the Numerical Analysis of Differential Equations by Arieh
Iserles.

24

	The problem
	Higher order equations
	Time dependence
	Solution operator, flow map

	Time stepping, the setup
	Runge Kutta methods
	A second order method
	Explicit multi-stage methods
	Two stage Runge Kutta methods
	Three stage Runge Kutta methods

	Multi-variate multi-component Taylor approximations
	Convergence theory
	Error expansion, modified equation
	Asymptotic expansion
	Asymptotic error expansion

	Adaptive methods
	References

