
Numerical Methods II, Courant Institute, Spring 2024
http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2024.html
Jonathan Goodman, January, 2024

Laplace equation
Discrete Laplace equation, accuracy, variational principle, Gauss Seidel

1 Introduction
sec:intro

The first few classes if this course are about solving elliptic partial differential
equations (PDEs). This is a non-standard choice, but it seems to be a setting
where many important ideas and methods used in the rest of the class can be
introduced naturally. The textbook of LeVeque also puts elliptic PDE first.

This class discusses only one PDE, the Laplace equation. The purpose is not
really to learn only about the Laplace equation. There are specialized methods
such as integral equations methods for the Laplace equation, but which apply
apply only to equations a lot like the Laplace equation. This class describes
properties and methods related to the Laplace equation that have analogues in
many or most (depending on the property) other elliptic PDEs. Things that
you can learn about the Laplace equation by direct calculation are also true in
other problems, but for reasons that take too long to explain for this course.

To say this differently, the Laplace equation in 2D is used here as a model
problem. It is not the problem of interest. The methods described here probably
are not the methods of choice for the Laplace equation in 2D in a square domain.
Fourier series or integral equations give more accurate approximations. But
Fourier series solutions do not directly apply to non-linear problems or domains
with a complex shape. See later classes and homework for problems where the
numerical methods described here are closer to a method of choice. A model
problem is one that illustrates general features of actual target problems while
being simple enough to understand directly.

2 The Laplace equation
sec:PDE

The Laplace equation is a partial differential equation (PDE) satisfied by a func-
tion u. We use notation x = (x1, · · · , xn) for a point in n dimensional space.
This class is mostly about the case n = 2, so I write (x, y) instead of (x1, x2).
In physical applications, u(x, y) could be the equilibrium temperature or con-
centration of some diffusing chemical. The Laplace equation in two dimensions
is

4u = ∂2
xu+ ∂2

yu = f(x, y) . (1) Le

The function f is called the inhomogeneous term or forcing function or right hand
side (the latter even if the equation is written with f on the left as f = 4u). If
u represents temperature, then f represents heat sources (adding heat) or heat

1



sinks (taking away heat). If u represents electric potential, then f is electric
charge density. If u represents gravitational potential, then f represents mass
density.

The function u is supposed to be defined for all (x, y) in a domain Ω. This
class always takes Ω to be the unit square 0 < x < 1 and 0 < y < 1 but
real applications usually have Ω as the whole space or some set with geometry
more complicated than a square. Complex geometry and unbounded domains
are crucial topics, but too advanced for this first class. A point (x, y) is in the
interior of Ω if there is some ε > 0 so that (x′, y′) ∈ Ω whenever

|(x, y)− (x′, y′)| =
√

(x− x′)2 + (y − y′)2 < ε .

The Laplace equation (
Le
1) is supposed to be satisfied for every x in the interior of

Ω. The boundary of Ω is denoted by ∂Ω or Γ. A point (x, y) is on the boundary
if for every ε > 0 there is at least one (x′, y′) with |(x, y)− (x′, y′)| < ε with
(x′, y′) in Ω and at least one not in Ω. For mathematicians, the term domain
that Ω implies that Ω is equal to its interior, so that the points on Γ are not
part of Ω. With these understandings, the boundary of the unit square consists
of the left edge: x = 0, 0 ≤ y ≤ 1, together with top, bottom and right edges.

The function u is determined by the PDE (
Le
1) that holds in the interior

together with boundary conditions, which are extra conditions on u that apply
at each boundary point. This class treats only the Dirichlet boundary value
problem, which is that the value u(x, y) is specified for each (x, y) ∈ Γ. A book
on partial differential equations probably has a proof that if the right hand side
and boundary values are reasonable functions (a term not defined here) then
there is a unique u that satisfies the PDE in Ω and the boundary conditions on
Γ.

u(x, y) = g(x, y) for all (x, y) ∈ Γ . (2) Dbc

The boundary value function g need only be defined for (x, y) ∈ Γ. A shorthand
way to express this is

u = g on Γ .

3 Finite Difference Discretization
sec:disc

The PDE (
Le
1) can be thought of as an equation that is supposed to hold at every

point (x, y) ∈ Ω. The unknowns are the values u(x, y) for every (x, y) ∈ Ω. This
is an infinite set of equations for an infinite set of unknowns. Discretization
means creating a finite (but large) set of numbers U to approximate the infinite
set of values of u, and determining U by solving a finite (but large) set of
equations.

One way to discretize involves finite difference approximations of the partial
derivatives in the PDE. Finite differences are approximations to derivatives,

2



such as

v′(x) ≈ v(x+ ∆x)− v(x)

∆x

v′′(x) ≈ v(x+ ∆x)− 2v(x) + v(x−∆x)

∆x2
.

Such approximations apply to the x and y derivatives in the Laplace operator
of (

Le
1). The result is

4u(x, y) ≈ u(x+ ∆x, y)− 2u(x, y) + u(x−∆x, y)

∆x2

+
u(x, y + ∆x)− 2u(x, y) + u(x, y −∆x)

∆x2
.

(3) dL

These finite differences are applied on a finite (but large) mesh of points in the
interior of the unit square.

To define the mesh, we start with points on the x and y axes with uniform
spacing ∆x

xj = j∆x , yk = k∆x . (4) xjyk

These create a grid (also called mesh or net) of points in the interior of the unit
square of the form (xj , yk). We choose ∆x so that there are n of the x points
in the interior of the interval [0, 1]. The definition (

xjyk
4) makes x0 = 0 on the

boundary of the interval. We adjust ∆x so that xn+1 = 1 is the other boundary
point. This breaks the interval [0, 1] into n+ 1 pieces of size ∆x, so

∆x =
1

n+ 1
.

This is a uniform grid of size n×n = n2 where the finite difference approximations
(
dL
3) will be applied.

If (xj , yk) is a grid point, then the finite difference approximation (
dL
3) involves

the values of u only at other grid points. That is because, for example, xj −
∆x = xj−1. We write Ujk ≈ u(xj , yk) for the approximate values on the grid
points. We specify that U should satisfy a finite difference approximation to the
Laplace equation (

Le
1) at the grid points. The discrete Laplace operator (discrete

laplacian) is the right side of (
dL
3). We specify that U should satisfy the discrete

Laplace equation, using the values of f at the grid points. This gives an equation
at grid point (xj , yk) which takes the form (writing fjk for f(xj , yk))

Uj+1,k − 2Ujk + Uj−1,k

∆x2
+
Uj,k+1 − 2Ujk + Uj,k−1

∆x2
= fjk . (5) dLe

An equivalent form of these equations shows that if f = 0 then each Ujk is the
average of its four neighbors:

Ujk −
Uj+1,k + Uj−1,k + Uj,k+1 + Uj,k−1

4
=
−∆x2

4
fjk . (6) dLes

3



These equations are supposed to apply for all n2 grid points in the interior of
the square. We assume that the “boundary” values are given their exact known
values:

U0k = u(0, yk) = g(0, yk)
Un+1,k = u(xn+1, yk) = g(1, yk)
Uj,0 = u(0, yk) = g(0, yk)
Uj,n+1 = u(xn+1, yk) = g(1, yk)

 . (7) bv

There are n2 equations (
dLe
5), one for each interior grid point. There are also n2

unknowns Ujk. The boundary values that appear in some of the equations, such
as U0,k and Un+1,k, have known values. Thus the finite difference equations (

dLe
5)

are a system of linear equations with the same number of equations as unknowns.
If the corresponding matrix is non-singular, then there is a unique solution. The
solution is U , which is the finite difference approximation to u.

Ghost cells

Ghost cells are a programming trick that simplify the handling of boundary
conditions. It seems natural, at first, to represent U in the computer with a two
index array U[j,k], where j and k are allowed to range from 1 to n (in Julia,
Fortran, Matlab) or from 0 to n − 1 (Python, C++, C). If you do this, then
you have to check when you apply the finite difference formulas (

dLes
6) whether

the grid point (xj , yk) has a neighbor on the boundary (which corresponds to
j = 1 or j = n or k = 1 or k = n). Another way to do this is to allocate an
array with dimensions (n + 2)×(n + 2) and put the boundary values gjk into
the boundary locations in the U array. For example, U [0, k] = g0,k = g(0, yk),
and U [n+1, k] = gn+1,k = g(1, yk). This will give the right result whenever you
apply the difference eqations (

dLes
6) at an interior point without needing special

code to hold the cases j or k being 1 or n. For example, when j = 1 the formula
(
dLes
6) accesses the value U0,k, which would have the correct value g(0, xk). The

values U0,k, etc., are ghost values.
More complicated schemes with a higher order of accuracy (future classes)

may use more than one row or column of ghost cells and ghost values.

4 Variational principle
sec:vp

A variational principle for u of U is a minimization problem so that u or U is
the minimizer. Variational principles have many uses. In some cases, they help
derive a PDE to describe a physical situation. For example, strains (displace-
ments) in a material under stress minimize the total elastic energy, which is
in integral involving first derivatives of the strains. Variational principles help
in deriving good discretizations of a PDE. If the discretization has a discrete
variational principle related to the continuous one satisfied by the PDE, then
the discretization inherits stability properties of the PDE. Finite element meth-
ods are the method of choice for many elliptic PDE problems, and they are
based on variational principles. Finally, variational principles lead to iteration

4



algorithms to solve the discrete equations that have guaranteed convergence
properties. The Gauss Seidel algorithm described in Section

sec:GS
6.3 is an example.

The plan of this Section is to explain a variational principle for the Laplace
equation, then to derive a related discrete variational principle for the finite
difference discrete equations (

dLe
5) or (

dLes
6).

Variational principles for linear problems involve quadratic forms and linear
forms (often called linear functionals). If the function in the variational prin-
ciple has a minimum, then the quadratic form is positive definite. A positive
definite quadratic form defines an inner product that can be used to define or-
thogonality and a notion of distance (a metric). This inner product and metric
lead to a simple geometric picture of the problem formulation and the effect of
approximations.

4.1 For matrices
sec:m

This subsection is about linear algebra, but it uses notation from Section
sec:disc
3 for

continuity. The dimension is M ; a generic vector is U or V . The right hand
side is F . So we write AU = F instead of Ax = b.

The M ×M matrix A is symmetric if AT = A. It is positive definite if
UTAU > 0 whenever U 6= 0. A matrix is symmetric positive definite, or SPD, if
it has both properties. A quadratic form1 is a function of U ∈ RM of the form

Q(U) = 1
2 U

TAU .

We will usually assume, and often forget to say, that A is symmetric. If A is
not symmetric, then there is a symmetric matrix Ã that has the same quadratic
form. This is because z = 1

2 U
TAU is a number, which may be thought of as as

1× 1 matrix. Therefore zT = z implies that

UTAU = z = zT = UTAT (UT )T = UTATU .

Therefore A and AT give the same quadratic form. This implies that we can
average and get

UTAU = 1
2

(
UTAU + UTATU

)
= UTÃU , Ã = 1

2

(
A+AT

)
.

The symmetric matrix Ã is the symmetric part2 of A. The quadratic form
coming from A is the same as the quadratic form coming from the symmetric
part of A.

1A polynomial in more than one variable is called a form if every term has the same degree.
For example C(U) = U3

1 + U2
2U3 − 2U1U2U3 is a cubic form. The quadratic form is a sum of

quadratic monomials of the form ajkUjUk.
2The skew symmetric part of A is 1

2

(
A−AT

)
. The matrix A is the sum of its symmetric

and skew symmetric parts. If z is a complex number, its real part is 1
2

(z+z) and its imaginary

part is 1
2

(z − z). The complex number is the sum of its real and imaginary parts. Taking
the transpose of a matrix is analogous to taking the conjugate of a complex number. The
symmetric part of a matrix has all real eigenvalues (being a symmetric matrix) and the skew
symmetric part has all imaginary eigenvalues.

5



A positive definite matrix must be non-singular. Since A is square, if A is
singular then there is a U 6= 0 with AU = 0. But taking the inner product with
U then would give a non-zero vector with UTAU = UT 0 = 0, which contradicts
the condition that A is positive definite.

An abstract inner product is a function of two vectors U and V and is
written 〈U, V 〉. To be a (real) inner product, it must be symmetric, linear in
each argument, and positive definite:

〈aU1 + bU2, V 〉 = a〈U1, V 〉+ b〈U2, V 〉
〈U, aV1 + bV2〉 = a〈U, V1〉+ b〈U, V2〉

〈U, V 〉 = 〈V,U〉
〈U,U〉 > 0 if U 6= 0 .

(Exercise for fun: show that an inner product has 〈0, 0〉 = 0.) An SPD matrix
defines an inner product through the formula

〈U, V 〉A = UTAV .

Conversely any inner product defines an SPD matrix. The entries are

Ajk = 〈ej , ek〉 , the ej being the standard basis elements

An inner product defines a norm through

‖U‖2 = 〈U,U〉 , or ‖U‖ =
√
〈U,U〉 .

The A inner product defines the A norm:

‖U‖2A = 〈U,U〉A = UTAU .

There are norms not defined by an inner product, but any norm satisfies the
triangle inequality

‖U + V ‖ ≤ ‖U‖+ ‖V ‖ .
A norm that comes from an inner product also satisfies the Cauchy Schwarz
inequality

〈U, V 〉 ≤ ‖U‖ · ‖V ‖ .
There is an inequality about numbers: xy ≤ 1

2x
2 + 1

2y
2. Combined with Cauchy

Scshwarz, this gives

〈U, V 〉 ≤ 1

2
‖U‖2 +

1

2
‖U‖2 .

There is a simple but clever generalization of this that is used often in technical
arguments. Let a be any positive number. Then3

〈U, V 〉 = 〈
√
aU,

1√
a
V 〉 ≤ a

2
‖U‖2 +

1

2a
‖V ‖2 .

3This is sometimes called the Peter Paul principle. To find out why, do a web search for
the expression: “Rob from Peter to pay Paul”.

6



This allows you to choose a small a and get an inequality that puts a small
weight on ‖U‖ (taking from Peter) if you compensate by putting a large weight
on ‖V ‖ (paying Paul).

Warning: The matrix A that comes from the discretization (
dLes
6) of the Laplace

equation is symmetric and positive definite (we will see). The discretization (
dLe
5)

differs by a sign, so its matrix is symmetric and negative definite.
Any linear system of equations involving an SPD matrix has a variational

formulation. Finding U to satisfy AU = F is equivalent to

U = arg min
V

1
2V

TAV − V TF . (8) Avp

To see this you have to see that the function

E(V ) = 1
2V

TAV − V TF (9) E(V)

has a minimum and a unique minimizer. Then you need to understand why
that minimizer solves the linear equation system. Calculating the gradient of E
solves the second issue and part of the first one. It gives a “weak form” of the
variational principle:

∇E(U) = 0 ⇐⇒ AU = F . (10) wvf

Since any positive definite matrix is non-singular, the solution U is unique and
there is only one stationary point.4

We calculate the gradient of the quadratic and linear parts of E separately.
The i component of ∇E(V ) is

∂

∂Vi
E .

The i component of ∇
(
V TF

)
is

∂

∂Vi
V TF =

∂

∂Vi

∑
j

VjFj = Fi .

Since this is true for any index i, it implies the vector form

∇V TF = F . (11) lg

Of course, V TF = FTV so ∇FTV = F also.
You can calculate ∇Q(V ) in a similar way, but it may be approached ab-

stractly as well. The abstract approach relies on a fact of calculus. If f(x, y) is
a function of two variables, then

d

dx
f(x, x) =

∂f

∂x
+
∂f

∂y
.

We apply this here using the bilinear form related to Q, which is

B(V,W ) = 1
2V

TAW =
1

2
〈V,W 〉A .

4A stationary point of a function f(x) is an x where ∇f(x) = 0 Any minimizer is a
stationary point but a stationary point need not be a minimizer, or even a local minimizer.

7



The quadratic form is Q(V ) = B(V, V ) = 1
2 ‖U‖

2
A. The calculus fact applied to

B implies that
∇Q = ∇B(V, V ) = ∇VB +∇WB .

The notation is not ideal, but ∇VB(V,W ) is the gradient of B as a function of
V with W held fixed, etc. Since V TAW = V T (AW ), we may take AW to be
the F above and get

∇V V TAW = AW .

Similarly,
∇W V TAW = ∇W WTATV = ATV .

When A is symmetric, these calculations combine to give

∇B = 1
2 (AV +AW ) .

When V = W , this leads to

∇Q(V ) = AV . (12) qg

These results may be combined to give the gradient of the combined function
(
E(V)
9)

∇E(V ) = AV − F . (13) gE

This implies the weak variational formulation (
wvf
10).

The strong variational principle states not only that the solution of the linear
system is a stationary point, but also that U is the minimizer of E. This depends
on the fact that A is positive definite. To see what’s important here, consider a
matrix that is symmetric but not positive definite, such as

A =

(
1 0
0 −1

)
.

This matrix has
Q(V ) = 1

2

(
V 2

1 − V 2
2

)
.

The stationary point where ∇Q = 0 is U =

(
0
0

)
, but this U is not a minimizer

because Q has no minimum.
The geometry of quadratic minimization problems involving E(V ) (see be-

low) suggests the following proof that the solution of AU = F is a minimizer.
Let W be the difference between a generic vector V and the solution, U , of the
linear system: V = U +W . Note that AU = F implies that UTAU = UTF and
WTAU = WTF . Therefore,

E(V ) = E(U +W ) =
1

2
(U +W )

T
A (U +W ) + (U +W )

T
F

=
1

2
UTAU +WTAU +

1

2
WTAW + UTF +WTF

= −1

2
UTAU +

1

2
WTAW .

8



If you look at this as a function of W alone, then UTAU is a constant. Since A is
positive definite, WTAW > 0 unless W = 0. Thus, E(V ) > E(U) unless W = 0.
If W = 0 then E(V ) = E(U). This shows U is a minimizer of E. We already
saw that a minimizer is the minimizer, which also is the solution of AU = F .

Rather than this computational argument, you could argue that there is an
r so that E(V ) > 0 if |V ‖ > r (details left out, but not too hard). Informally,
this is because when V is large, the positive definite part of E “dominates” the

linear part. Of course E(εF ) = ε2

2 F
TAF − ε ‖F‖2, which is negative if ε is small

enough. Therefore the minimum of E(V ) is the same as the minimum over a
compact set, so it is attained. As before, a minimum is the unique solution of
AU = F .

There is a geometric interpretation of the variational principle that will be
useful later. For any number c there is a hyperplane of vectors with V TF = c

H(c) =
{
V with V TF = c

}
.

You seek vectors V ∈ H(c) that are as close to the origin as possible in the A
norm. This is equivalent to minimizing half of the square of the A norm

min
V ∈H(c)

1

2
‖V ‖2A = min

V TF=c

1

2
V TAV . (14) gmp

The constrained minimizer may be found using a Lagrange multiplier λ, and we
already have expressions for the gradients involved, so

AV = λF . (15) Lm

We can find a formula for λ using V = λA−1F (which may be transposed to
give V T = λFTA−1) , and the constraint V TF = C. The result is

λ =
c

FTA−1F
.

The geometric minimization problem (
gmp
14) also may be used to solve the

linear system. In fact the solution, V , of (
gmp
14) satisfies AU = F “up to a scale

factor”. That is, U = mV , for some scale factor m. Substituting in gives

AU = mλF .

Thus, we solve the linear system with the scaling U = 1
λV . In retrospect, you

could substitute U = 1
λF into AU and get F .

4.2 For the Laplace equation
sec:vLe

One variational principle for the inhomogeneous Laplace equation (
Le
1) (also

called the Poisson problem) involves the Dirichlet integral (also called gradi-
ent energy or Dirichlet energy or Dirichlet form)

D(u) =
1

2

∫
Ω

|∇u(x, y)|2 dxdy . (16) Di

9



The norm of the gradient is the euclidean norm

|∇u(x, y)|2 = ( ∂xu(x, y))
2

+ ( ∂yu(x, y))
2
.

The Dirichlet variational principle for the inhomogeneous Poisson problem is

min
u=g on Γ

1

2

∫
Ω

|∇u(x, y)|2 dxdy +

∫
Ω

f(x, y)u(x, y) dxdy . (17) Dp

We will show (just below) that the u that minimizes this functional (a functional
is a function of a function) satisfies the inhomogeneous Laplace equation (

Le
1) for

(x, y) ∈ Ω.
Here is a form of the traditional argument that a minimizer of (

Dp
17) satisfies

the Laplace equation and the boundary conditions. If u is a minimizer, over
functions that satisfy the boundary conditions, then you lower the energy with
any perturbation u ← u + εv as long as v(x, y) = 0 on Γ. We can plug this in
to get

min
1

2

∫
Ω

|∇u(x, y) + εv(x, y)|2 dxdy +

∫
Ω

f(x, y) (u(x, y) + εv(x, y) dxdy .

You can see that this is

E(u) + ε

[∫
Ω

∇u(x, y) · ∇v(x, y) dxdy +

∫
Ω

f(x, y)v(x, y) dxdy

]
+O(ε2) .

The order ε term must vanish for every v if u is a minimizer (why?) so if v = 0
on Γ, then ∫

Ω

∇u(x, y) · ∇v(x, y) dxdy +

∫
Ω

f(x, y)v(x, y) dxdy = 0 .

The PDE comes in via integration by parts, which is sometimes called Green’s
theorem. If v = 0 on Γ, then∫

Ω

∇u(x, y) · ∇v(x, y) dxdy = −
∫

Ω

4u(x, y) v(x, y) dxdy

This implies that for every v,∫
Ω

[4u(x, y)− f(x, y) ] v(x, y) dxdy = 0 .

That is possible only if 4u(x, y) = f(x, y) for all (x, y) ∈ Ω.
This argument is not mathematically rigorous because we did not show that

u and v are differentiable. A rigorous version of this argument was given by
Hermann Weyl almost a century after Dirichlet gave this informal version. The
discrete version below is rigorous because it is finite dimensional and involves
only “ordinary” partial derivatives rather than variations in function space.

10



4.3 For the discrete Laplace equation
sec:vdLe

The linear system coming from the discretization (
dLe
5) also have a variational

principle coming from an SPD matrix A. You can guess that that this may
be found using a discrete approximations to the integrals in (

Dp
17). A natural

discrete approximation to the integral fu is∫
Ω

f(x, y)u(x, y) dxdy ≈ ∆x2
n∑
j=1

n∑
k=1

fjkUjk .

The discrete analogue of the Dirichlet integral is the discrete Dirichlet sum
we already found. Here is some reasoning to see how you could find it by looking
for discrete analogues to continuous integrals. We use the one-sided approximate
gradients

∂xu(xj , yk) ≈ u(xj + ∆x, yk)− u(xj , yk)

∆x

∂yu(xj , yk) ≈ u(xj , yk + ∆x)− u(xj , yk)

∆x

These approximations combine to make an estimate of the integral of the square
gradient in a grid box

Bjk = {xj ≤ x ≤ xj+1 , yk ≤ y ≤ yk+1 } .

∫ ∫
Bjk

|∇u(x, y)|2 dxdy

≈ ∆x2

[(
u(xj + ∆x, yk)− u(xj , yk)

∆x

)2

+

(
u(xj , yk + ∆x)− u(xj , yk)

∆x

)2
]

The factors of ∆x cancel on the right. We want to include all the grid boxes
inside the square, even the ones that touch the boundary. When we sum over
all boxes, j and k should run from 0 to n. Thus, the Dirichlet sum, which is the
discrete approximation to the Dirichlet integral, should be

Dn(U) =
1

2

n∑
j=0

n∑
k=0

[
(Uj+1,k − Ujk)

2
+ (Uj,k+1 − Ujk)

2
]
. (18) dDs

This is clearly a quadratic form in the vector U . We take zero boundary con-
ditions and “implement” them using the ghost cell idea of setting U0,k = 0,
Un+1,k = 0, etc.

We find the matrix A corresponding to this quadratic form by computing

∂Dn(U)

∂Ulm
= (AU)lm .

11



The quantity Ulm appears in four of the terms in the sum (
dDs
22). The terms and

corresponding derivatives are

j + 1 = l, k = m :
1

2

∂(Ul,m − Ul−1,m)2

∂Ulm
= Ul,m − Ul−1,m

j − 1 = l, k = m :
1

2

∂(Ul+1,m − Ul,m)2

∂Ulm
= Ul,m − Ul+1,m

j = l, k = m+ 1 :
1

2

∂(Ul,m − Ul,m−1)2

∂Ulm
= Ul,m − Ul,m−1

j = l, k = m− 1 :
1

2

∂(Ul,m+1 − Ul,m)2

∂Ulm
= Ul,m − Ul,m+1

We add these terms to get the overall derivative

∂Dn(U)

∂Ulm
= (Ul,m−Ul−1,m)+(Ul,m−Ul+1,m)+(Ul,m−Ul,m−1)+(Ul,m−Ul,m+1)

This gives

(AU)lm = 4Ulm − (Ul−1,m + Ul+1,m + Ul,m−1 + Ul,m+1 ) .

This is a form of the discrete Laplace operator with diagonal entries all equal
to +4 and non-zero off-diagonal entries equal to −1.

5 Stability, Poincaré inequalities
sec:Pi

Poincaré inequalities5 are inequalities that bound a norm of a function by a
norm of its gradient. Inequalities of this kind are central to the theory of
elliptic partial differential equations. They also address an issue that arises in
infinite dimensional space but not in finite dimensions. In infinite dimensions
it is possible that a quadratic form is positive in the sense that Q(u) > 0 if
u 6= 0 and yet is not positive definite in the sense that there is a µ > 0 so that
Q(u) ≥ µ ‖u‖2. The continuous Poincaré inequality gives such a positive µ. The
discrete version gives a positive µ that does not go to zero as ∆x→ 0.

We use a discrete version of a Poincaré inequality here to show that the
discretization (

dLe
5) of the Laplace equation is stable. The discrete equations (

dLe
5)

are solvable in the sense that the number of equations is equal to the number
of unknown values Ujk, both numbers being n2. With a little more thinking, it
can be shown that the discrete equations AU = F are solvable because AU = 0
has no solutions except U = 0. This implies that for any n and for any norms
‖U‖α and ‖F‖β (the subscripts α and β are only meant to denote that there is

5Henri Poincaré was a French mathematician active in the decades around 1900. He revolu-
tionized many fields of mathematics, including topology (the Poincaré conjecture), dynamical
systems (his book Les Méthodes Nouvelles de la Méchanique Céleste (new methods of celestial
mechanics) was the beginning of modern chaos theory) and analytic number theory.

12



a choice of norms, and that the norms for U and F might be different) there is
a Cn,α,β so that

‖U‖α ≤ Cn,α,β‖F‖β . (19) gi

In numerical analysis it matters how Cn,α,β depends on n. We look for specific
norms ‖·‖α and ‖·‖β so that Cn,α,β is independent of n as n → ∞. We would
say that the method is stable in the norms ‖·‖α and ‖·‖β .

Stability is the intuitive property that U does not “blow up” as ∆x → 0
and (this is the same thing) n → ∞. We hope that U converges to the actual
solution u as ∆x → 0, so U 6→ ∞ seems to be a prerequisite. Conversely, we
will see that if the method is stable then U does converge to u as ∆x→ 0. The
hardest, most technical and most abstract parts of numerical analysis concern
stability. To say that a method is stable, you find yourself saying something
like: “There is a C and a norm ‖·‖ so that for all ∆x sufficiently small, · · · (some
inequality involving carefully chosen norms).” Stability inequalities for discrete
approximations usually are discrete versions of an inequality that applies to
solutions of the target PDE. To get there, you need to find the right PDE
inequality and the right discrete analogue of it and then find a way to prove the
discrete inequality.

Coming back to the Poincaré inequality, suppose Ω is the unit square (0 ≤
x ≤ 1 and 0 ≤ y ≤ 1) and u(x, y) is differentiable with u = 0 on Γ, then there
is a constant C so that (proof below)∫

Ω

u(x, y)2 dxdy ≤ C

∫
Ω

|∇u(x, y)|2 dxdy . (20) Pi

There is a similar inequality for functions U defined on a grid. To state this
we need discrete analogues of both sides of (

Pi
20) with the right powers of ∆x.

Suppose Ujk = 0 when (xj , yk) ∈ Γ and that Ujk is defined for j = 1, · · · , n and
k = 1, · · · , n. A discrete approximation to the L2 norm on the right side is

‖U‖22 = ∆x2
n∑
j=1

n∑
k=1

U2
jk . (21) dU2

The prefactor ∆x2 makes the double sum consistent with the double integral,
so that if Ũjk = u(xj , yk), then∥∥∥Ũ∥∥∥2

2
→
∫

Ω

u(x, y)2 dxdy , as ∆x→ 0 .

Powers of ∆x only change the constant Cn,α,β in the generic inequality (
gi
19),

but you have to get them right if you want an inequality where C stays bounded
as n → ∞. We are looking for a discrete inequality that is consistent with the
continuous one we already know (from a previous PDE class, proof “reviewed”
below). That makes it more likely that the discrete inequality might actually
be true with a constant independent of n.

The discrete analogue of the Dirichlet integral is the discrete Dirichlet sum
we already found. Here is some reasoning to see how you could find it by looking

13



for discrete analogues to continuous integrals. We use the one-sided approximate
gradients

∂xu(xj , yk) ≈ u(xj + ∆x, yk)− u(xj , yk)

∆x

∂yu(xj , yk) ≈ u(xj , yk + ∆x)− u(xj , yk)

∆x

These approximations combine to make an estimate of the integral of the square
gradient in a grid box

Bjk = {xj ≤ x ≤ xj+1 , yk ≤ y ≤ yk+1 } .

∫ ∫
Bjk

|∇u(x, y)|2 dxdy

≈ ∆x2

[(
u(xj + ∆x, yk)− u(xj , yk)

∆x

)2

+

(
u(xj , yk + ∆x)− u(xj , yk)

∆x

)2
]

The factors of ∆x cancel on the right. We want to include all the grid boxes
inside the square, even the ones that touch the boundary. When we sum over
all boxes, j and k should run from 0 to n. Thus, the Dirichlet sum, which is the
discrete approximation to the Dirichlet integral, should be

Dn(U) =

n∑
j=0

n∑
k=0

[
(Uj+1,k − Ujk)

2
+ (Uj,k+1 − Ujk)

2
]
. (22) dDs

The discrete Poincare inequality is that there is a C, which is independent of
n, so that

‖U‖22 ≤ C Dn(U) . (23) dPi

The factor ∆x2 in the definition of the 2−norm (
dU2
21) is necessary for C to be

independent of n.
We give a proof of the discrete Poincaré inequality is a discrete analogue of a

part of a proof of the continuous inequality (
Pi
20). The full proof of the continuous

Poincaré inequality has technicalities related to what functions u are allowed.
The discrete version (

dPi
23) does not have this issue because the inequality holds

for every vector U .
We give one of the proofs of the formal part of the continuous Poincaré

inequality. By “formal” we mean that we assume that u has enough derivatives.
Such an incomplete proof should be called “informal”, but usually is called
“formal” because it has the form of a proof without going through all the details.
This proof illustrates a common trick in proving inequalities involving integrals:
prove a simpler inequality and then integrate to get the desired result. Another
trick is that if you add something positive to the right side of a true inequality,
you get another true inequality. In this case, we start with a one dimensional
Poincarë inequality that involves a function v(x) with v(0) = 0 and v(1) = 0

14



and relates an integral involving v to an integral involving the derivative. Then
we integrate over y to get an integral involving u(x, y), then we add the y
derivatives.

The one variable inequality is∫ 1

0

v(x)2 dx ≤ C
∫ 1

0

(v′(x))
2
dx . (24) ovPi

To prove this, we use the Cauchy Schwarz inequality (look it up if you don’t
know it). If f and g are “any” two functions, then∫

f(x)g(x) dx ≤

√∫
f(x)2dx

∫
g(x)2dx .

If a is any number between 0 and 1, then (using the hypothesis that v(0) = 0)

v(a) =

∫ a

0

v′(x) dx .

We use a trick involving Cauchy Schwarz:

v(a) =

∫ a

0

v′(x) dx

=

∫ a

0

1 · v′(x) dx

≤

√∫ a

0

12 dx

∫ a

0

(v′(x))
2
dx

=
√
a

√∫ a

0

(v′(x))
2
dx

v(a)2 ≤ a
∫ a

0

(v′(x))
2
dx

v(a)2 ≤
∫ 1

0

(v′(x))
2
dx .

The last uses the fact that the integrand (v′(x))
2

is never negative, so integrating
from 0 to 1 instead of from 0 to a cannot make the value smaller. We also use
the assumption that 0 ≤ a ≤ 1 so replacing a with 1 only makes right side
bigger. Finally, integrate with respect to a from 0 to 1 and you get∫ 1

0

v(a)2da ≤
∫ 1

0

(∫ 1

0

(v′(x))
2
dx

)
da =

∫ 1

0

(v′(x))
2
dx

This gives the one variable Poincaré inequality (
ovPi
24).

This can be integrated in y to give a two variable inequality. For any fixed
y, the one variable inequality implies that∫ 1

0

u(x, y)2 dx ≤
∫ 1

0

(∂xu(x, y))
2
dx .

15



Now integrate over y and get∫ y=1

y=0

∫ x=1

x=0

u(x, y)2 dxdy ≤
∫ y=1

y=0

∫ x=1

x=0

(∂xu(x, y))
2
dxdy . (25) Pii

These integrals are over the unit square, which we have been calling Ω. The
square gradient is

|∇u|2 = (∂xu)
2

+ (∂yu)
2
.

We can add in the y derivative part to the right side of (
Pii
25) and switch notation

to get ∫
Ω

u(x, y)2dxdy ≤
∫

Ω

[
(∂xu(x, y))

2
+ (∂yu(x, y))

2
]
dxdy .

This is the Poincaré inequality (
Pi
20).

6 Iterative solution methods
sec:im

Iterative methods are methods for solving discrete equation systems like (
dLe
5).

This section first explains why people use iterative methods, then it gives an
example, the Gauss Seidel method. You will learn, if you code it, that Gauss
Seidel is simple and reliable but very slow. Later classes will try to explain this
slowness and use that understanding to make better iterative solvers.

6.1 Why iterative methods
sec:why

Most of the computer time in finding U goes into solving the discrete equations
(
dLe
5). These equations are linear, so they can be solved by assembling the appro-

priate matrix A (calculating and storing all its entries) and then using a linear
algebra package to solve the corresponding equations

AU = F .

This direct approach is impractical for large n because A is too big. The
unknowns Ujk form a vector U ∈ RM , with M = n2. The matrix A has
M2 = n4 entries. Direct Cholesky factorization for the linear system take about
1
6M

3 = 1
6n

6 operations. For n = 100, A has 1004 = 100,000,000 entries and the
operation count for Cholesky is 1

61012.
Sparse direct solvers lead to (much faster) algorithms with smaller powers of

n. A matrix is entrywise sparse (often just called “sparse”) if most of its entries
are zero. The discrete Laplace matrix has at most 5 non-zero elements per row,
because each of the discrete equations (

dLe
5) involves at most 5 of the unknowns

Ujk.
The matrix is also banded. Suppose you put the Ujk in row major order

U = U11, · · · , U1n, U21, · · · , U2n · · · ) .

Then Ujk is coupled only to adjacent entries Uj−1,k and Uj+1,k and to entries
a distance away, Uj,k−1 and Uj,k+1. Thus, all the entries of A a distance more

16



than n from the diagonal are zero. The M ×M matrix has bandwidth equal to
n (or maybe n+ 1 or 2n+ 1, depending on how you define “width”). The work
for Cholesky factorization of such a matrix is (from Numerical Methods I)

(size) · (bandwidth)2 = M · n2 = n4 � n6 .

A “band-solver” (Cholesky code for a banded matrix) can easily handle a 100×
100 discrete Laplace problem. In 3D with an n× n× n mesh, the bandwidth is
n2 and the work count is

(size) · (bandwidth)2 = n3 ·
(
n2
)2

= n7 .

The band-solver from LAPACK (or other top quality software) can do this on
a laptop.

Band structure does not fully describe our sparsity. A matrix with band-
width n could have 2n + 1 non-zeros per row, but ours has only 5. There is
sophisticated sparse matrix software that stores only the non-zero entries of a
matrix. Of course, it also has to store the locations of these non-zeros. It also
tries to re-order the equations to reduce fill-in. The Cholesky factors of a sparse
matrix are generally not sparse even when the matrix itself is sparse. For ex-
ample, the factors of our banded matrix have non-zeros in every entry within
the band (believe this, please). A zero in A that becomes non-zero in a factor is
said to be filled in. There are clever algorithms and powerful heuristics that can
reduce fill-in by big factors. But even these do not make the hardest problems
practical.

6.2 Overview of iterative methods
sec:ov

Iterative methods
It is easy to write code to “apply” A without computing and storing its

entries. A procedure that applies A takes a grid vector V as input and returns
the vector U = AV . For example, if the equations are written in the form (

dLes
6),

the entries of A are either 1 or − 1
4 . The code to compute AV would have in its

inner loop

U[j,k] = V[j,k] - ( V[j-1,k] + V[j+1,k] + V[j,k-1]+V[j,k+1] )/4

Ghost cells are a programming trick to simplify the code that calculates
AV . A ghost cell (more properly ghost “point”) is a point on the boundary,
corresponding to j or k being equal to 0 or n + 1. The issue is that The trick
is to define the arrays V and U so the indices j and k can run from 0 to n+ 1,
which makes them (n+ 1)× (n+ 1) arrays in the computer.

6.3 Gauss Seidel iteration
sec:GS

The Gauss Seidel algorithm is an iterative algorithm for solving a system of
equations

AU = F . (26) gls

17



One Gauss Seidel iteration involves “sweeping” through the components of the
current iterate in some order. At each step, you solve equation j for component
j, leaving the other components unchanged. You then replace the old component
j with the new one and move on to component j + 1. The component j + 1
update uses the new component j value, which overwrote the old j value.

A general iterative algorithm computes a sequence of iterates, U (1), U (2),
· · · . U (k), · · · . The residual it iteration k is the amount by which U (k) fails to
satisfy the equations:

R(k) = AU (k) − F . (27) Rk

This way, R(k) = 0 implies that U (k) satisfies the system (
gls
26). The residual of

equation j is (supposing there are M components in all, and that aij is the (i, j)
component of A)

R
(k)
j =

M∑
i=1

ajiU
(k)
i − Fj .

Suppose we are doing iteration k, sweeping through the components, and have

reached component j. The values U
(k+1)
i for i < j have been computed and we

seek U
(k+1)
j . The residual of equation j, keeping all components fixed except

component j, is ∑
i<j

ajiU
(k+1)
i + ajjU

(k+1)
j +

∑
i>j

ajiU
(k)
i − Fj .

The first sum involves the components of U (k+1) that have already been com-
puted. The second sum involves components of U (k) that have not yet been
updates. We set this residual to zero by taking component j of the new iterate
to be

U
(k+1)
j =

1

ajj

Fj −
∑
i<j

ajiU
(k+1)
i −

∑
i>j

ajiU
(k)
i

 . (28) GSgm

This is the Gauss Seidel algorithm.
The code for the Gauss Seidel algorithm is simpler than (

GSgm
28) suggests. You

need storage for only one vector U , because once U
(k+1)
j is computed, the old

value U
(k)
j is never used. The code in Figure

fig:GS_loop
1 illustrates this. The array

(vector) U has entries U[i], which represent either U
(k+1)
i (if i < j) or U

(k)
i (if

i > j).
You might wonder why one sweep does not give the exact solution. After

all, the new value U
(k+1)
j is chosen to make the residual of equation equal to

zero. Unfortunately, this makes the residual of equation j− 1 not equal to zero.

The residual calculation when Uj−1 was updated used the old value U
(k)
j , not

the new value U
(k+1)
j . With luck, the iterates converge as k →∞.

18



Figure 1: Code fragment (Python) to implement the Gauss Seidel iteration (
GSgm
28).

When the code gets to line 22, the variable R is the quantity inside parentheses
there. The code has a single vector U. The values U[i] for i < j represent

U
(k+1)
i , and those with i > j represent U

(k)
i . Only the value i = j, which would

be U
(k)
j is left out of the sum. fig:GS_loop

6.4 Variational structure and convergence
sec:GSv

The Gauss Seidel iteration might or might not converge, depending on the
matrix A. We will see that it converges if A is SPD, because of a variational
interpretation of the algorithm that is related to the variational formulation of
the linear system. Even without the variational structure, you can see that
A being SPD implies that the diagonals ajj are not zero (because they are
positive), so at least the equation (

GSgm
28) makes sense. Another matrix might have

zeros on the diagonal. For example

A =

(
0 1
1 0

)
.

The linear system AU = F for this A is equivalent to the equations U2 = F1

and U1 = F2. The linear system is easy to solve, but not by using Gauss Seidel
iteration. A more nuanced example is(

ε 1
1 ε

)(
U1

U2

)
=

(
F1

F2

)
. (29) bex

The Gauss Seidel algorithm (
GSgm
28) becomes (check this algebra)

U
(k+1)
1 =

1

ε

(
F1 − U (k)

2

)
U

(k+1)
2 =

1

ε

(
F2 − U (k+1)

1

)
=

1

ε
(F2 − F2 ) +

1

ε2
U

(k)
2 .

If |ε| < 1 and the initial guess U
(0)
2 is not exactly equal to the solution value

for the linear system (
bex
29), the iterates U

(k)
2 diverge as k → ∞. Note that the

matrix in (
bex
29) is not positive definite. Indeed,(

U1 U2

)(ε 1
1 ε

)(
U1

U2

)
= 2U1U2 + ε

(
U2

1 + U2
2

)
.

19



If U2 = −U1, this is 2 (ε− 1)U2
1 , which is negative if ε < 1 and U1 6= 0.

IfA is SPD, then the Gauss Seidel iteration may be understood as minimizing
the functional E(V ) (see (

E(V)
9)) over component j. Suppose we are doing the sweep

to compute U (k+1) from U (k) and have updated the components Ui with i < j.
Consider a vector where component j is called W and the other components
have fixed values either from iteration k + 1 or from iteration k:

V (W ) = (U
(k+1)
1 , · · · , U (k+1)

j−1 , W, U
(k)
j+1, · · · , U

(k)
M ) .

Then the derivative of E(V (W )) with respect toW is component j of∇E(V (W )).
According to the derivative calculation (

gE
13), this is component j of the residual

R(W ) = AV (W )−F . If we minimize E over W , this is equivalent (because the
function is strictly convex) to setting the derivative with respect to W equal to
zero. That (we just saw) is equivalent to setting component j of A(V (W ))− F
equal to zero, which is the Gauss Seidel algorithm.

A consequence of minimizing is that E decreases at every step of every itera-

tion. When you replace U
(k)
j without changing the other components, choosing

the optimal U
(k+1)
j ensures that E decreases. The difference between the right

and left sides is only that U
(k)
j on the right is replaced by U

(k+1)
j on the left:

E(U
(k+1)
1 , · · · , U (k+1)

j , U
(k)
j+1, · · · , U

(k)
M ) < E(U

(k+1)
1 , · · · , U (k)

j , U
(k)
j+1, · · · , U

(k)
M )

20


	Introduction
	The Laplace equation
	Finite Difference Discretization
	Variational principle
	For matrices
	For the Laplace equation
	For the discrete Laplace equation

	Stability, Poincaré inequalities
	Iterative solution methods
	Why iterative methods
	Overview of iterative methods
	Gauss Seidel iteration
	Variational structure and convergence


