
Numerical Methods II, Courant Institute, Spring 2024
http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2024.html
Jonathan Goodman, February, 2024

Assignment 4, Multigrid

The multigrid method is a way to solve large systems of equations that arise
as discretizations of elliptic PDE. They are based on combining two (or more)
kinds of “moves” (a term from MCMC that seems applicable here). Relaxation,
also called smoothing when used in multibrid, is a local “move” like Gauss Seidel
or Jacobi iteration. Coarse grid correction is a “move” that solves a version of
the problem on a coarse grid. The local smoothing move reduces high frequency
components of the error. The coarse grid correction reduces low frequency
components. Alternating between smoothing and coarse grid correction gives
a method that reduces all components. “Multigrid convergence” means that
each full multigrid iteration (iterations are often called cycles to indicate that it
cycles through the two moves) reduce the error norm by a fixed factor (say, .5)
no matter how fine the grid is. If there are N grid points in all, then multigrid
convergence would solve the equation system in total work proportional to N .
By contrast, Gauss Seidel alone on an n×n mesh takes O(n2) iterations to
reduce the error by a factor of 2, and each iteration takes O(n2) work. The
number of grid points is N = n2 so the work to get a factor of 2 reduction in the
error is O(N) instead of O(1) for multigrid. Multigrid makes possible very high
resolution massive grid computations that would be impractical using simple
iteration methods, even when accelerated using conjugate gradients.

We will solve the discrete Laplace equation on a square n×n mesh with
Dirichlet boundary conditions and the five point discrete Laplace operator. The
discrete equations are

Ujk = 1
4 [Uj,k+1 + Uj,k−1 + Uj+1,k + Uj−1,k ] + fjk .

These equations should hold for j and k in the range 1, 2, · · · , n. Dirichlet
boundary conditions are implemented by setting Ujk = 0 for j or k equal to 0
or n + 1 (ghost cells). If V is any grid function, the residual, r, is defined by

Vjk = 1
4 [Vj,k+1 + Vj,k−1 + Vj+1,k + Vj−1,k ] + fjk + rjk . (1)

The correction, W , is the grid function that satisfies

Wjk = 1
4 [Wj,k+1 + Wj,k−1 + Wj+1,k + Wj−1,k ]− rjk .

The exact solution U is found by adding the correction to V (check this):

U = V + W .

The coarse grid correction is an approximation to W that is found using a
coarser mesh.

1



Multigrid algorithms require communication between fine and coarse grids.
Here is one of the ways this can happen. Suppose the fine grid n is odd, so
n = 2m + 1. The coarse grid is the subset of fine grid points with even indices.
This makes the coarse grid m×m, which has about four times fewer grid points.
Multigrid convention uses h to represent the fine grid (think of h = ∆x) and
2h = H for the coarse grid. We write Uh for an n×n grid of values (padded with
ghost cells, to make an (n + 2)×(n + 2) array in the computer). We write U2h

for an m×m grid vector. The prolongation operator (also called interpolation) is
Ih2h (“Interpolation” from the 2h to the h grid). Prolongation is Uh = Ih2hU

2h.
We do this using piecewise linear interpolation. Let j and k be in the range
from 1 to m on the coarse grid. The (j, k) grid point on the coarse grid is in
the same place as the (2j, 2k) grid point on the fine grid. Therefore, we take

Uh
2j,2k = U2h

jk .

We fill in in the pure x and y directions by linear interpolation, so

Uh
2j−1,2k =

1

2

(
U2h
jk + U2h

j−1,k

)
Uh
2j,2k−1 =

1

2

(
U2h
jk + U2h

j,k−1

)
.

The diagonal fill-in uses values at the 4 nearest coarse grid points

Uh
2j−1,2k−1 =

1

4

(
U2h
jk + U2h

j−1,k + U2h
j,k−1 + U2h

j−1,k−1

)
.

These equations define the prolongation operator Uh = Ih2hU
2h. As a matrix,

Ih2h is n2×m2 (n2 rows and m2 columns). The restriction operator produces a
course grid vector from a fine grid vector. It goes from h to 2h and is written
I2hh . We will use a restriction operator called “full weighting” (because it’s
better than an earlier idea). This is

I2hh = 1
4

(
Ih2h
)T

.

This is a matrix with m2 rows and n2 columns. The prefactor is so that all
ones on the fine grid lead to all ones on the coarse grid. Figures ?? and ??
illustrate the prolongation and restriction operators. The restriction operator
takes the coarse grid value to be a weighted sum of the 9 nearest fine grid values.
The prolongation operator distributes each coarse grid value to the same 9 fine
grid points. A fine grid value is the sum of the contributions from its coarse
neighbors. There can be 1, 2 or 4 coarse grid values contributing to a given find
grid value, depending on the location of the fine grid point. These operations

The multigrid algorithm is recursive in that it uses a procedure that calls
itself. This makes code structure more important. There should be separate
procedures (subroutines, functions) for a Gauss Seidel iteration (one “sweep”),
and for coarse-to-fine and fine-to-coarse grid transfers. These need to have clear
interfaces and understandings about their arguments (sizes, presence of ghost

2



Figure 1: Prolongation operator with weights. Fine grid points are blue and
coarse points are black. Every black point is also blue, which is why black points
have blue circles around them.

3



Figure 2: Restriction operator with weights. All the weights drawn add up to
1 + 4 · 1

2 + 4 · 1
4 = 4. The overall prefactor 1

4 makes it so that restricting a
constant function on the fine grid gives the same constant on the coarse grid.
Figure ?? has the fine and coarse grid points labelled.

4



cells, etc.)

Exercise 1.

1. Write a procedure that takes two grid functions U and f and does one
Gauss Seidel sweep.

2. Write a procedure that computes and returns the residual defined by (??).

3. Write procedures to implement restriction and prolongation operators.
Both find and coarse grids should have borders of ghost cells with zeros
that may be accessed but should not be modified. To check that these
are coded correctly, check that restrictions and prolongations of linear
functions produce the same linear functions. Be careful that this
(linear −→ linear) property happens only in the interior but is spoiled at
the boundary by ghost cell values equal to zero.

4. Start with Uh = 0 and f = 1 (the constant function) and then do t Gauss
Seidel sweeps (call your Gauss Seidel procedure t times). Take that Uh

and see how well it can be represented by an interpolation from the coarse
grid by first restricting to the coarse grid and then interpolating back to
the fine grid:

Ũh = Ih2hI
2h
h Uh .

Also calculate r, the residual of Uh. Make one figure that contains plots
of

e(t) =
∥∥∥Ũh − Uh

∥∥∥ , ‖r‖

as functions of t. Note that these functions may have different overall
scales, so you may need different scalings of the y axis to see both curves
clearly. The result should be that r decreases more slowly with t than e(t).
This shows that the error is smooth enough to be accurately represented
on a coarse grid before it is small. This effect is more dramatic when n
is larger. Take n as large as is practical (run time a few seconds) for this
part. You will not need a large t.

The two grid method involves only the coarse m×m grid with spacing 2h
and the n×n grid with spacing h, and n = 2m + 1. One two-grid iteration is

• Start with a fine grid function Uh.

• Do p Gauss Seidel sweeps on the fine grid, giving a fine grid function V h

• Compute the V h residual on the fine grid, rh.

• Restrict the fine grid residual to the coarse grid r2h = I2hh rh.

• Solve the discrete Laplace system on the coarse grid: L2hW 2h = −r2h.

• Interpolate the coarse grid correction to the fine grid Wh = Ih2hW
2h.

5



• Add the coarse grid correction Ũh = V h + Wh.

• Uh → Ũh is one two-grid iteration.

Exercise 2. Implement the two grid iteration. You may solve the coarse grid
equations using Gauss Seidel iterations on the coarse grid. Make a plot of ‖r‖
as a function of two-grid iteration number. Choose a relatively small p (such as
p = 2 or p = 1 or p = 4) and note how the residual decreases. How does the
rate of decrease depend on the mesh size n? (Answer: it should be independent
of n, but this experiment will be very slow for large n, likely slower than just
doing Gauss Seidel on the fine mesh.

The multigrid method is essentially the two grid method with the coarse grid
solve replaced by some number of multi-grid iterations on the coarse grid. One
multi-grid iteration consists of p fine grid Gauss Seidel sweeps followed by a
coarse grid correction. To do a coarse grid correction, you first evaluate the
residual on the fine grid and restrict it to the coarse grid, as in the two-grid
method. The coarse grid correction is q multi-grid iterations on the coarse grid.
The method with q = 1 is the “V-cycle”. With q = 2 it is the “W-cycle”. With
q = 3 it is a “super W-cycle” (very rare). The coarsest mesh could be n = 3 or
n = 2. On that you either do a direct solve, which involves a 9×matrix if n = 3,
or you do a lot of Gauss Seidel iterations (maybe 10).

Exercise 3. Show that the total work for one multi-grid iteration is O(n2),
where n2 is the number of mesh points on the finest grid. This is true for
q = 1, 2, 3. The total work is O(n2 log(n)) for q = 4. Don’t worry about
q > 4. The basic fact is that the coarse grid has 4 times fewer points than the
fine grid, so 3 coarse grid sweeps take 3

4 of the work of one coarse grid sweep.

Continuing, 9 sweeps on the coarse coarse grid take
(
3
4

)2
less work. You can

sum over all the grids and get a finite answer (that doesn’t grow with n) if q ≤ 3.

Multi-grid convergence means getting a fixed factor reduction in the error or
residual for an amount of work proportional to the number of fine grid points
where the reduction factor is independent of the fine grid size. In practice, the
reduction is not just fixed, but small, such as 1

2 or less.
Figure ]reffig:mg illustrates different multigrid cycles depending on parame-

ters of the method.

• p – the number of pre-sweeps. The number of Gauss Seidel sweeps before
the coarse grid correction.

• r – the number of post-sweeps. The number of Gauss Seidel iterations
after the coarse grid correction.

• q – the number of multigrid cycles on the coarse grid per fine grid grid
multigrid cycle. q = 1 is the V cycle. q = 2 is the W cycle.

6



Exercise 4. Implement the multi-grid method and see whether the residual
(which can be measured in the solution process) goes down by a fixed factor
independent of the mesh size. Experiment with parameters p and q to see how
the convergence factor depends on them. Note that p = 2 is roughly twice as
much work per iteration as p = 1, so try to make recommendations for p and
q for solving the discrete Laplace equation on a big fine mesh as quickly as
possible.

7



Figure 3: Illustrations of multigrid cycles. Black dots represent Gauss Seidel
sweeps. Red dots represent direct solves. Dark green arrows represent grid
transfer (restriction or prolongation) operations. The top is a two grid method
with p = 3 Gauss Seidel followed by a coarse grid solve. Next is a three grid
W-cycle (q = 2 with p = 3. After that is another W-cycle, but this time
with one pre-sweep (p = 1) and one post sweep (r = 1). With the post-sweep,
there is at least one Gauss Seidel sweep between the 4h → 2h and 2h → h
prolongations. The bottom is maybe the most popular W-cycle (one pre and
post sweep) illustrated with 4 grids.

8


