
Numerical Methods II, Courant Institute, Spring 2024
http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2024.html
Jonathan Goodman, February, 2024

Assignment 3, Solving ODE,

This is a more traditional assignment with some theory exercises and a
computation.

1. Runge Kutta methods are sometimes applied to linear ODEs

ẋ = Ax .

Show that there is a p stage method that uses p matrix/vector multiplica-
tions per time step and achieves order p accuracy. One way to do this is a
matrix version of what is called Horner’s rule for evaluating a polynomial
u(x):

u(x) = apx
p + ap−1x

p−1 + · · ·+ a1x+ a0

=
(
apx

p−1 + ap−1x
p−1 + · · ·+ a1

)
x+ a0

=
((
apx

p−2 + · · ·+ a2

)
x+ a1

)
x+ a0

...

= (· · · (apx+ ap−1)x+ ap−2)x+ · · ·+ a1)x+ a0 .

The Horner’s rule algorithm for evaluating a polynomial is

yp = apx+ ap−1

yp−1 = ypx+ ap−2

...

y1 = y2x+ a1

u(x) = y1x+ a0 .

You can apply a matrix version of this to the Taylor approximation of the
matrix exponential

e∆tA = I + ∆tA+ · · ·+ 1

p!
∆tpAp +O(∆tp+1) ,

applied to a vector x.
Remark. In particular there is a five stage fifth order method for linear
problems while there is no five stage fifth order method for general non-
linear problems.
Remark. This is also low storage because you do not have to store the
individual stage evaluations kj .

1

2. The Verlet1 method is a special leap-frog type centering idea that applies
to second order ODEs of the form

ẍ = f(x) .

One version of Verlet starts write it in first order form

ẋ = v

v̇ = f(x) .

We compute Xn ≈ x(tn) and Vn+ 1
2
≈ v(tn+ 1

2
). This allows us to create

centered approximations to ẋ and v̇

Vn+ 1
2
− Vn− 1

2

∆t
= f(Xn)

Xn+1 −Xn

∆t
= Vn+ 1

2
.

Show that this method is formally second order accurate (the residual is
order ∆t2).

3. The computing exercise involves a non-linear lattice wave equation2

Üjk = Uj,k+1 + Uj,k−1 + Uj+1,k + Uj−1,k − 4Ujk − βU3
jk . (1)

Use the “boundary condition” that U values on the boundary (with j or k
equal to 0 or n+1) equal to zero. The problem is linear if β = 0. Consider
the discrete Dirichlet sum for the linear discrete Laplace operator with a
quartic (fourth order) term added

Φ(U) =
1

2

∑
(Uj+1,k − Ujk)

2
+ (Uj,k+1 − Ujk)

2
+
β

4

∑
U4
jk .

Show that the equation (1) has the abstract form

Ü = −∇Φ(U) . (2)

Consider the Hamiltonian

H(U, U̇) = Φ(U) +
1

2

∑
U̇2
jk . (3)

Show that if U satisfies the dynamical equation (1), then

d

dt
H(U(t), U̇(t)) = 0 . (4)

1This is a French name so you don’t pronounce the t. In the English approximate pronun-
ciation, the first syllable is “ver”, as in “version”. The second syllable is like “lay”.

2Lattice means grid in this context. The atoms in a crystal are arranged in a regular
pattern called a lattice. You can look on the web for images of different kinds of lattice. This
one is a 2D square lattice. A triangular lattice is a regular array of equilateral triangles. A
simple 3D analogue of 2D square lattice would be a cubic lattice, but there are two kinds.

2

Hint. This property, the conservation of the Hamiltonian on trajectories,
is a general property of dynamical systems of the form (2). It does not
depend on the specific functional form of Φ. This fact would be a part
of an upper level physics class on dynamics, where Φ would be called
potential energy (or just potential) and the second term of (3) would be
called kinetic energy.

Programming and computing exercise.

The goal of this exercise is to create a movie solutions of the lattice wave equa-
tion (1). The process should illustrate some steps developing and validating
computational software. First is checking that the code is correct in a math-
ematical sense. Here, we do this by testing on a model problem and doing a
convergence analysis to verify the order of accuracy. Second, we check whether
beautiful lattice wave movies are correct and how they can be wrong. The code
should be modular so that it is easy to change problems and solution algorithms.
That means that there can be several functions, possibly in separate code files,
to take a time step, to compute a solution trajectory, to implement the ODE
(evaluate the f in ẋ = f(x)), to do a convergence analysis, to extract data for
the movie, etc.

ODE solver. Write an ODE solver that uses either forward Euler or the four
stage Runge Kutta method to compute the solution up to time t. The Runge
Kutta time step should be a separate function (or “method” or “subroutine” or
“procedure” depending on your programming language) that takes as input x,
∆t, and the function f and produces the result of one time step, which would be
called Xn+1 if x were Xn. The ODE solver should compute a trajectory from
x0 = x(t) up to x(T) where T and ∆t are inputs (also f). For the convergence
study, it only needs x(T), but for the movie it needs to return an array of frames
which are the solution at equally spaced times that can be visualized to make
frames of a movie. You can “record” a frame (write it into the output array of
the ODE solver) every m time steps or with time intervals Tfr.

Code validation. Try your solver on the two-component ODE3

ẋ = −(x2 + y2) y

ẏ = (x2 + y2)x

x(0) = 1

y(0) = 0

x(t) = cos(t)

y(t) = sin(t) .

3It might seem simpler to use the linear system with the same solution, but it is important
to “exercise” the code fully. Exercise 1 shows that it is possible for a method to be fifth order
accurate on linear problems but only fourth order for non-linear problems.

3

Take T = 2π and check that forward Euler produces a first order accurate
approximation while the fourth order RK produces fourth order accurate so-
lutions. You may find that verifying the fourth order method is a challenge
because of roundoff in the ODE solver and possibly because of off-by-one errors
in the number of time steps (also caused by roundoff).

Code play. Still using the two component ODE, make a plot of the solution
curve in 2D up to a longer time such as 20π or 60π. You may find that the
numerical solution blows up if ∆t is too large. Choose a ∆t so that the first
order “solution” deviates significantly from the exact solution (maybe, doubles
in size, or grows by 20%, or try both) and observe the behavior of the fourth
order computation with the same ∆t.

Linear movie. Apply your code to the lattice wave equation (1) with β = 0
(the linear case). Choose initial data with Ujk(0) = 0 except that Un

2 ,n2
(0) = 1.

That is, take an initial lattice with the only disturbance being one value in the
center of the lattice. The movie will show a circular wave expanding outward
from the center with speed 1 (one lattice length per unit of time). This is the
light cone. There is almost no activity outside the light cone but lots inside.
You should see lots of small amplitude waves and some very large disturbances
that move outward more slowly than the circular light cone wave. This is a
caustic. You may need to use a large lattice to see these structures clearly. Run
the simulation up to two or three times the time it takes the light cone to reach
the boundary. After that, the solution is too complicated to be described in a
simple way. Experiment with the first and fourth order methods. Note how the
light cone and caustic structures are computed inaccurately unless the time step
is small (fourth order) or extremely small (forward Euler). Try to describe the
different numerical artifacts produced by the different time stepping methods.
One method “damps” waves so that you see structures with small ∆t that you
don’t see with larger ∆t. The other method makes structures bigger than they
should be.

Non-linear movie. For this, use only the fourth order method. You should
have seen by now that it produces accurate solutions much faster than forward
Euler. Explore the effect of taking β > 0. How large does β have to be to
change the solution noticeably? What happens to the light cone and to the
caustic structures inside?

Extra credit. Solve the lattice wave equation using the Verlet method. De-
scribe the time needed and artifacts produced. Make a plot of the value of the
Hamiltonian. This is constant for the exact solution but not for the numerical
solutions. See how different solvers change the Hamiltonian in different ways.

4

