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Assignment 2, Diffusion in steady state,

due March 12, 5:15 pm.

Diffusion is a slow process in which “stuff” (a chemical or heat) re-distributes
itself in a background material. A basic model of diffusion involves a density
function u(x) and a diffusion coefficient µ(x). The diffusion coefficient is a
property of the material that determines how fast stuff diffuses through it. You
can think of a planar sheet of metal with heat flowing through. If the sheet has
variable thickness then heat flows faster where the sheet is thicker. The density
u(x) says how much “stuff” there is per unit area (or unit volume in 3D).

The Wikipedia article on diffusion is OK, particularly the second half with
examples. It might help web searching to look for “diffusive transport” of “heat
flow Fourier law”, etc. Engineers use “transport” to refer to ways stuff can go
from one place to another.

Flux (also called current) is what is the basic quantity describing diffusion.
It is a vector “field” (which means having a value that can be different at each
point) F (x, y) = (Fx(x, y), Fy(x, y)). The quantity of stuff inside a “control
volume” V (we are doing 2D, so volumes really are areas) is

QV =

∫
V

u(x, y) dxdy .

There are two “mechanisms” that can change QV , diffusion described by a
diffusive flux F , and external “forcing” described by a source term f(x, y).
According to vector calculus, if B = ∂V is the boundary of V , then the flow
rate of stuff across B is ∮

B

F · ndl .

Here dl is the element of line length on the curve B and n is the unit outward
normal. The divergence theorem is (we write the divergence as div(f) = ∂Fx

∂x +
∂Fy

∂y ) ∮
B

F · ndl =

∫
V

div(F ) dxdy .

The source term adds or subtracts to QV directly “from the outside”, f . You
can think of u being heat that can be increased by an external heat source
(f > 0) or radiated away (f < 0). The rate of change of Qv because of external
forcing is ∫

V

f(x, y) dxdy .
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In an equilibrium steady state forcing balances diffusion to give zero net rate of
change for any control volume. This means∮

B

F · ndl =

∫
V

div(F ) dxdy =

∫
V

f(x, y) dxdy . (1)

This is supposed to hold for every control volume V , so it should hold “point-
wise”, for every x and y:

div(F )(x, y) = f(x, y) . (2)

Fick’s law1 is a model of diffusive flow. It says that “stuff” flows from high
density (where u is large) toward low density (where u is small) with a flux
proportional to the negative gradient:

F (x, y) = −µ(x)∇u(x, y) . (3)

You can combine Fick’s law with the flux balance equation (2) to get2

div (µ(x, y)∇u ) = −f . (4)

In a homogeneous medium (think of a metal plate of constant thickness), µ will
be a constant that can be taken out of the equation, which leaves the Laplace
equation

div∇u =
∂

∂x

∂u

∂x
+

∂

∂y

∂u

∂y
= 4u = −f .

Exercise 1. Show that the Dirichlet integral and variational principle for the
Laplace equation generalize to

E(u) =

∫
Ω

µ(x, y) |∇u(x, y)|2 dxdy = −
∫

Ω

udiv (µ(x, y)∇u ) dxdy , (5)

and

u minimizes
1

2
E(u)−

∫
Ω

f(x, y)u(x, y) dxdy . (6)

We create a conservation form (also called flux form) discretization of the
PDE (4). There is a grid spacing ∆x and xj = j∆x and yk = k∆x. The domain
for the PDE is the unit square. There are n grid intervals in each direction, so
n∆x = 1.

Unlike before, the discrete variables Ujk do not represent point values but
cell averages. The cell Cjk (also called control volume, particularly in 3D or if
they are not simple squares) is the square with side length ∆x and lower left

1The same model is often called the Fourier law when it is applied to diffusion of heat.
Fourier wrote a book on heat diffusion and showed how Fourier series and Fourier integrals
could be used to solve the equations.

2You can understand the minus sign with a 1D example. Suppose there is a uniform heat
positive source for 0 ≤ x ≤ 1 with boundary conditions u = 0 at x = 0 and x = 1. Then
u(x) = Cx(1 − x) has uxx = −2C = f . The minus sign makes u > 0 in the interior when f is
positive.
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Figure 1: Cells (control volumes): black squares with gray shading. Cell centers:
blue dots. Cell edge centers: magenta dots. Fluxes: green arrows based on
differences connected by green dashed lines. Cell Cj,k has (xj , yk) as its lower
left vertex.
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vertex at (xj , yk) (see Figure 1). The area of each cell is ∆x2. The discrete
variables Ujk are meant to approximate the cell averages

Ujk ≈ ujk =
1

∆x2

∫
Cjk

u(x, y) dxdy .

There are n2 cells, with j and k running from 0 to n− 1.
We say that the value Ujk is cell centered because it is a second order accurate

estimate of the solution at the center of the cell, which is u(xj+ 1
2
, yk+ 1

2
). If the

scheme is second order accurate, then

Ujk = ujk +O(∆x2) = u(xj+ 1
2
, yk+ 1

2
) + ∆x2 . (7)

In particular, Ujk is only first order accurate as an estimate of vertex value
u(xj , yk).

The conservation form discretization of the PDE (4) may be regarded as an
approximation of the conservation law (1) for each control volume Cjk. There
are numerical fluxes that are centered at the centers of the cell edges (see Figure
1).

Fx,j,k+ 1
2
≈ Fx(xj , yk+ 1

2
) =

1

∆x

∫ yk+1

yk

Fx(xj , y) dy +O(∆x2) (8)

Fy,j+ 1
2 ,k
≈ Fy(xj+ 1

2
, yk) =

1

∆x

∫ xj+1

xj

Fy(x, yk) dx+O(∆x2) . (9)

The numerical fluxes are estimated using Fick’s law and finite difference approx-
imations of the derivatives, all centered at the midpoints of the appropriate cell
edges (see where µ is evaluated in each case):

Fx,j,k+ 1
2

= µ(xj , yk+ 1
2
)
Ujk − Uj−1,k

∆x
(10)

Fy,j+ 1
2 ,k

= µ(xj+ 1
2
, yk)

Ujk − Uj,k−1

∆x
. (11)

The discretization consists of an approximation to the divergence condition (2)
at each cell center

1

∆x

[
Fx,j+1,k+ 1

2
− Fx,j,k+ 1

2

]
+

1

∆x

[
Fy,j+ 1

2 ,k+1 − Fy,j+ 1
2 ,k

]
= f(xj+ 1

2
, yk+ 1

2
) .

(12)
Exercise 2. Verify the second order accuracy of cell and edge averages. These
are the second inequalities in (7), (8), and (9). Verify the second order accuracy
of the fluxes. That is, if you use ujk instead of Ujk in (8), the result is a flux
approximation that agrees with the true flux at the midpoint of the cell edge to
second order:

F x,j,k+ 1
2

= Fx(xj , yk+ 1
2
) +O(∆x2) .
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Warning. You might think differences of second order accurate approximations
yield only first order approximations. Suppose you have Gj = g(xj) +O(∆x2).
The centered derivative approximation might be only first order:

g′(xj+ 1
2
) ≈ Gj+1 −Gj

∆x
+O(∆x) .

However, it is second order if the error in G is, at least to leading order, a
smooth function of x, as in

Gj = g(xj) + ∆x2h(xj) +O(∆x3) .

We want to apply Dirichlet boundary conditions u = 0 when x = 0 or x = 1
or y = 0 of y = 1. This may be implemented using a version of the ghost cell
trick. Create ghost cell values outside the domain whose values are the “reflec-
tions” of values just inside the domain. This is U−1,k = −U0,k, Un,k = −Un−1,k,
etc. With this, the equations (12) form a system of n2 equations for the n2 un-
knowns Ujk for j = 0, · · · , n− 1 and k = 0, · · · , n− 1.

Exercise 3. Assume that the diffusion coefficient µ is strictly positive and
smooth. Show that these equations may be formulated in matrix form as
AU = f where A is a symmetric and positive definite matrix. Find a formula
for the discrete Dirichlet functional that is a second order accurate approxima-
tion to the continuous Dirichlet integral (5). Find a variational formulation of
the discrete equations and derive a Gauss Seidel algorithm that is guaranteed
to converge to the solution. Extra credit. Formulate and prove continuous and
discrete Poincaré inequalities.

Computing exercise

Write a code to implement the finite volume discretization and solve the equa-
tions using Gauss Seidel. Please produce the following “deliverables”, do some
experiments on your own, and comment on the results.

1. Take µ(x, y) = 1 +Ae−
(x− 1

2
)2

2r2 with A > −1.

2. Take u = xy(1−x)(1−y) and compute f so that the PDE (4) is satisfied.
Show that your method produces a second order accurate approximation
to this u. [It is a common trick to do code validation using a made-up
problem you know the answer to.]

3. Make contour plots of the solution and plots of the size of the update as
a function of Gauss Seidel iteration number.

4. Apply your code to model a heat conducting plate with a vertical strip of
high conducting material in the middle, with uniform heat forcing f = 1
for all x and y. Numerically, this means taking A large and r small,
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in a way you will determine by numerical experiments. Intuitively, this
should be similar to setting u = 0 when x = 1

2 . Can you verify this
computationally?

Suggestions for more experiments Do not to all of these, or possibly even
any of them. Feel free to ask other questions – interesting configurations to try,
etc.

• Is the code second order when f or µ is discontinuous?

• Is the convergence rate of Gauss Seidel proportional to ∆x2?

• If you write in a compiled language it will run far faster. You can notice
a big difference between the run times with you put j or k in the inner
loop.
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