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Assignment 1, Finite Element Methods,

due February 24, 5:15 pm.

Finite element methods are commonly used to solve elliptic PDEs. This
assignment goes through some of finite element basics, as applied to the in-
homogeneous Laplace equation on the unit square in 2D. Unfortunately, this
obscures one of the main reasons finite element methods are used in practice
(they are a billion dollar industry), their geometric flexibility and ability to han-
dle PDEs other than the Laplace equation. Please pay attention to notes on
individual exercises that explain where this generality comes from.

Take Ω to be the unit square in 2D and suppose u(x, y) and f(x, y) are
defined in Ω. The boundary of Ω is Γ. Consider the problem of finding u so
that

4u = f , for (x, y) ∈ Ω , u = 0 on Γ .

This is the inhomogeneous Dirichlet problem. Inhomogeneous means that f is
not zero. Dirichlet means that the boundary condition is that u = 0 on Γ. The
variational principle for this is that u is the minimizing function of

min
u∈H1

0

{
1
2

∫
Ω

|∇u(x, y)|2 dxdy +

∫
Ω

f(x, y)u(x, y) dxdy

}
. (1)

The space H1
0 is an example of Sobolev space. This one is defined by u ∈ H1

0 if∫
Ω

|∇u(x, y)|2 dxdy <∞ , and u = 0 for (x, y) ∈ Γ .

This is a vector space (in the sense of linear algebra) because if u and v both
have these properties (finite Dirichlet integral and Dirichlet boundary condi-
tions), then so does any linear combination au(x, t) + bv(x, y) = w(x, y). The
superscript 1 means one derivative (H2 requires second derivatives to be square
integrable) and the subscript 0 refers to the boundary condition.

There are mathematical subtleties that we will ignore here but you can read
about in a PDE book concerning H1

0 . One is that u can be in H1
0 without being

differentiable at every point. For example, the function

u(x, y) =
(

1
2 −

∣∣x− 1
2

∣∣ ) ( 1
2 −

∣∣y − 1
2

∣∣ ) . (2)

This function has |∇u(x, y)| < 1 for all (x, y) ∈ Ω where the derivative is defined,
but u is not differentiable when x = 1

2 or y = 1
2 . It also has u = 0 on Γ, so

maybe it should count as being in H1
0 . Consider, on the other hand, the function

u(x, y) = y(1− y) ·
{
x if 0 ≤ x < 1

2

0 if x ≥ 1
2 .

(3)
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This function also satisfies the boundary conditions and has |∇u| < 1 for any
(x, y) where u is differentiable. Nevertheless, this function is not in H1

0 .
Functions in H1

0 have a norm (term from linear algebra)

‖u‖2H1
0

=

∫
Ω

|∇u(x, y)|2 dxdy . (4)

The reason the u from (2) is in H1
0 and the u from (3) is not is that first can

be approximated by genuinely differentiable functions while the second cannot.
For the first u, there is a family of smooth functions uε, defined as ε→ 0 and a
bound M <∞ so that

‖uε‖2H1
0
≤M , ‖uε − u‖2L2 ≤ ε . (5)

The L2 norm is

‖v‖2L2 =

∫
Ω

v(x, y)2dxdy .

You can create an approximating function uε by “smoothing out” the corners
at x = 1

2 and y = 1
2 . This is not possible for the discontinuous function of

(3). If you try to smooth out the discontinuity at x = 1
2 , the gradient of the

approximating uε will be so large that the first requirement of (5) cannot be
satisfied. The Dirichlet integral of uε goes to infinity as ε → 0. This is the
almost correct technical definition of H1

0 . The norm (4) should be finite, either
in the literal sense sense that u is differentiable and the integral of the gradient
is good, or in the indirect sense (5) that u can be approximated in the L2 norm
by functions smooth functions with good gradients. Informally, functions with
discontinuous gradients like (2) are OK but discontinuous functions like (2) are
not.

Finite element methods, as opposed to finite difference methods from Class
1, work by approximating the solution by a trial function from a finite dimen-
sional trial space. This Assignment describes the C0 method with trial functions
that are piecewise linear on triangles often written PLT. The C in C0 means
“continuous”, the 0 means no derivatives. Thus, C0 just means that the trial
function is continuous. Fancier methods might be C1, which means that the trial
function and its first partial derivatives are continuous, or C2 (second deriva-
tives), etc. Triangles are triangular elements. A triangular element is a triangle
with vertices a, b, and c. There is an edge e = (a, b) connecting each pair of ver-
tices. The edge does not contain the vertices themselves, which we indicate by
writing (a, b) instead of [a, b]. The “closed” interval [a, b] includes its endpoints
while the “open” interval (a, b) does not. This convention has the consequence
that if d ∈ e is any point on the edge, then d is not a vertex of the triangle. The
face of the triangle is its “interior”, which is all the triangle except the vertices
and the edges. The closure of the triangle consists of the interior, the edges,
and the vertices.

A triangulation of Ω, denoted by T , is a set of triangles so that the interiors
are disjoint and every point is in the closure of some triangle. A valid triangula-
tion is one without slave nodes. A slave node is a vertex of one triangle T ∈ T
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that is on an edge of another triangle T ′ ∈ T . A valid triangulation has the
property that every triangle has exactly three edge neighbors1 (neighbors that
share an edge) and at least three more vertex neighbors (triangles that share a
vertex but not an edge). You can draw triangulations in which an element has
many vertex neighbors. Do a web search on “finite element triangulation”, look
for images, and you will get an idea of the geometric flexibility of triangulations.

A piecewise linear C0 function is a continuous function that is affine (“linear”
is the often used but slightly incorrect term) when restricted to any T ∈ T . A
function u is affine if there are constants so that u(x, y) = αx + βy + γ. It
is piecewise affine (piecewise linear) on T if every T ∈ T has αT , βT and
γT so that if (x, y) ∈ T then u(x, y) = αTx + βT y + γT . If u is affine in
T , then u is determined by its values at the three vertices of T . The set of
affine functions on T is three dimensional (parameters α, β, and γ) and the set
of vertex values is also three dimensional. The PLT trial space, denoted ST ,
consists of all piecewise linear (affine) functions on T that satisfy the Dirichlet
boundary conditions.

We use V to denote the interior vertex set or T . Thus, a ∈ V if a is a vertex
of some T ∈ T and a /∈ Γ. If u ∈ ST , then u(a) = 0 for any vertex a ∈ Γ. The
values u(a) for the interior vertices are arbitrary (why?). We use U to denote
the vector of these vertex values: U = (u(a), a ∈ V). More precisely, suppose
the interior vertices are numbered in some way

V = {a1, · · · , an} .

Then

U =

U1

...

Un

 =

u(a1)
...

u(an)

 .

This shows that ST is a vector space of dimension n, where n is the number of
interior vertices of T .

Exercise 1. Show that ST ⊂ H1
0 . Show that the nodal basis functions bj(x, y)

are a basis of ST . These are defined by bj ∈ ST and bj(ak) = 0 if j 6= k and
bj(aj) = 1. Show that there is a symmetric positive definite matrix A so that if
U represents the nodal values of u ∈ ST , then∫

Ω

|∇u(x, y)|2 dxdy = UTAU .

Show that the elements of A are

Ajk =

∫
Ω

∇bj(x, y) · ∇bk(x, y) dxdy . (6)

The support of a function is the set of (x, y) with f(x, y) 6= 0 (slightly inaccurate,
but works for this exercise). Show that the support of bj is the set of triangles

1This is slightly false. If an edge of T is part of Γ, then T has less than three edge neighbors
and possibly less than three vertex neighbors.
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with aj as a vertex. Show that Ajk = 0 unless j = k or (aj , ak) is an edge of
some T ∈ T .

Remark. A is the stiffness matrix. Assembling the stiffness matrix means com-
puting and storing (most likely in sparse matrix format) all its elements. Among
other things, requires you to order the interior nodes and compute the integrals
(6).

Suppose u is any continuous function defined in Ω. The piecewise linear
interpolant for triangulation T , which we denote by uT , is the function the
piecewise linear function uT ∈ ST that interpolates u in the sense that u(a) =
uT (a) for any a ∈ V. The diameter of an element T is the maximum distance
between points in T :

diam(T ) = max { |(x, y)− (x′, y′)| , (x, y) ∈ T , (x′, y′) ∈ T }

The mesh size is the maximum diameter of any element in the mesh. It is often
called h:

h = max
T∈T

diam(T ) .

Exercise 2. Show that if f is smooth in Ω, then there is a C so that

max
(x,y)∈Ω

|fT (x, y)− f(x, y)| ≤ Ch2 .

Suppose T is a triangular element with vertices (a, b, c). The standard tri-
angular element, called T0, is the unit right triangle with vertices α = (0, 0),
β = (1, 0), and γ = (0, 1). The condition number of T is the condition number
of the linear (affine, actually) map with a → α, b → β, and c → γ. The map

is affine in the sense that it takes (x, y) to M

(
x
y

)
+ r with r 6= 0 in general.

The map is linear if r = 0. The condition number is the condition number of
M : κ(T ) = κ(M). Note a little sloppiness here: The condition number κ(T )
defined here depends a little bit on which vertex of T goes to which vertex of T0.
You could fix that by making T0 a unit isosceles triangle (all edges have length
1) or by noting that knowing the condition number to within a factor of 2 is
good enough for this exercise. Making T0 an isosceles triangle makes gradient
estimation more complicated.

Exercise 3. Show that if u is smooth and there is a K with κ(T ) ≤ K, then

max
(x,y)∈T

|∇u(x, y)−∇uT (x, y)| ≤ CKdiam(T ) .

Show that CK →∞ as K →∞. Hint The bad elements with C large have two
small (and possibly equal) angles ε and one angle π − 2ε, and small diameter.
Warning: this might not be easy if you don’t see the tricks. If you can’t get the
general problem, you may assume that one of the angles of T is a right angle,
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and that this one is mapped to the right angle of T0.

Remark. A triangulation T is shape regular with constant K if the condition
numbers of all the elements is bounded by K. Being well conditioned is equiv-
alent to there being a minimum angle θmin so that all the angles in T are at
least θmin. The condition number definition of “shape regular” makes sense also
in 3D and it is what is used in analysis. Finite element convergence theorems
say that the approximate solutions uk on a family of triangulations Tk converge
to the exact solution if hk → 0 and all the triangles of all the triangulations
have κ(T ) ≤ K. When making fine meshes (triangulations with small h) shape
regularity is a big issue. If you just put points where you think you need them
and connect them to make triangles, it is likely that the triangulation will not
be shape regular. Mesh smoothing is the process of making shape regular trian-
gulations from bad ones.

Fancy finite elements face the issue of quadrature. The elements of the stiff-
ness matrix are integrals of polynomials over elements, which are evaluated
numerically by quadrature or by possibly complicated formulas. The quadra-
tures of Exercise 1 for the stiffness matrix are easy because ∇u is constant in
an element for PLT methods.

Exercise 4. Suppose that u ∈ ST and replace f with its piecewise linear
interpolant fT . Explain how to find the components of a vector F ∈ Rn so that∫

Ω

u(x, y)fT (x, y) dxdy = UTF .

Hint. The core of this is to find an algorithm for evaulating∫
T

(γ1x+ γ2y + γ3)(δ1x+ δ2y + δ3) dxdy .

when u(x, y) = (γ1x + γ2y + γ3) and f(x, y) = (δ1x + δ2y + δ3), T is the stan-
dard element, and and we given the values u(a), u(b), u(c), f(a), f(b), and f(c),
where a, b, and c are the vertices of T . If T is a general triangular element, you
also need the area of T , which is a “simple” formula involving the coordinates
of its vertices.

Remark. One takeaway from this exercise is that the basic operations of finite
element methods are conceptually simple but can be complicated to implement.
That explains that fact that many finite element calculations use large finite
element packages such as FEniCS. Writing all the code for a finite element cal-
culation yourself can take a long time, is error prone, and leads to inefficient
code.

Exercise 5. Suppose you solve 4vT = fT with Dirichlet boundary conditions,
and f is smooth. Show that

‖u− vT ‖L2 ≤ Ch2 .
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Hint. The error u − v satisfies 4(u − v) = f − fT , and u − v also satisfies
Dirichlet boundary contiions. Use this, Exercise 2, and the Poincaré inequality.

Remark. The simplicity of this illustrates the power of the finite element point of
view: that you are working with functions rather than grid values. Inequalities
for functions such as the Poincaré inequality tell you things about the numerical
method. Exercise 6 is more elegance. Exercise 4 hints at the messy side.

Exercise 6. The finite element solution uT is the solution of

min
u∈ST

‖u‖2H1
0
−
∫

Ω

u(x, y)fT (x, y) dxdy (7)

Show that uT also is the minimizing w in

dist2
H1

0
(u, ST ) = min

w∈ST
‖w − u‖2H1

0
. (8)

Hint. This is an orthogonality property. Draw a picture, imagining H1
0 is just

R2 and ‖u‖2H1
0

is x2 + y2.

Table of notation and terminolgy

Engineering papers often include a table of terminology and notation. Finite
element methods are often used by engineers and there seems to be a lot of
terminology and notation, so . . .

Ω the domain on which f and u are defined, [0, 1]×[0, 1]

Γ the boundary of Ω

T a valid triangulation of Ω

T a triangular element of the triangulation T
a, b, c the three vertices of an element T ∈ T
ST piecewise linear functions on Ω that are continuous and affine on each element T ∈ T

α, β, γ parameters defining an affine function, as αx+ βy + γ , or γ1x+ γ2y + γ3

H1
0 the Sobolev space of functions with

∫
Ω

|∇u(x, y)|2 dxdy <∞ , u = 0 on Γ

u the exact solution to 4u = f on Ω , u = 0 on Γ , or a generic element of H1
0

uT the piecewise linear interpolant of the exact solution on the triangulation T
U a vector of the values of u (and also uT on the vertices of T
fT piecewise linear interpolant of f on T , can have fT /∈ ST if f 6= 0 on Γ

vT solution with piecewise linear f , solution of 4vT = fT on Ω , vT = 0 on Γ

warning: vT /∈ ST .
wT the closest piecewise linear function to the true solution, in the H1

0 norm:

min
w∈ST

‖w − u‖H1
0
, u being the solution of the original problem 4u = f
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