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Complex Variables II

Assignment 9

1. The Fourier transform of a function f(x) is another function f̂(ξ) given
by the Fourier integral1

f̂(ξ) =

∫ ∞
−∞

e−2πiξxf(x) dx . (1)

The Fourier inversion formula is

f(x) =

∫ ∞
−∞

e2πiξxf̂(ξ) dξ . (2)

This is the Fourier representation or the plane wave representation of
f as a “sum” (integral) of complex exponentials eiξx with weights f̂(ξ).
The Fourier transform has many uses in pure and applied mathematics.
Most math grad students are expected to know it, though there is no
specific class that is required to cover it. Here is an approach that uses
complex analysis. There are other approaches that do not require complex
analysis. The method of this Exercise and Exercise 7 is a combination of
the method of Exercise 17 (page 124 of A Course of Modern Analysis
by E. T. Whittaker and G. N. Watson) and the method of Exercise 2 of
Assignment 4.

The Fourier transform formula (1) and the Fourier inversion formula (2)
differ only in the minus sigh in the exponent. Therefore, a derivation of
property B about f from property A about f̂ usually also is a derivation
of the property A about f̂ from property B from f . For example, if∣∣∣f̂(ξ)

∣∣∣ ≤ C (1 + ξ2
)

then f(x) is continuous (check this but do not hand it

in). Here “property A” is the inequality and “property B” is continuity.

Similarly, if |f(x)| ≤ C
(
1 + x2

)
, then f̂(ξ) is a continuous function of ξ.

The roles of the “space variable” x and the “frequency variable” ξ may
be reversed in most Fourier formulas. This is useful, for example, in the
Dirac formula (6).

This Exercise handles the Fourier formulas (1) and (2) under the hypoth-
esis that f is analytic and exponentially decaying in a “strip” which will
be a fixed width neighborhood of the x axis:

Sr = {z | −r ≤ Im(z) ≤ r} .
1There are different conventions for the definition of the Fourier transform. The difference

is usually in the location of the 2π factors. For example, physicists usually replace 2πξ with
ξ in (1) and (2). This requires one of them to get a pre-factor of 1

2π
.
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We assume that the function f(x) extends to an analytic function in some
Sr and has exponential decay in the sense that there are constants C > 0
and m > 0 with

|f(z)| ≤ Ce−m|x| , for all z = x+ iy ∈ Sr . (3)

(a) Show that f(x) = e−
(x−µ)2

2σ2 is in the function class (3). Find examples

that decay only exponentially (e−c|x| rather than e−cx
2

) and only in
a finite strip.

(b) Show that if f satisfies bounds of the form (3), then f̂ satisfies similar
bounds (analytic in a strip around the x axis and uniform exponential
decay in that strip), but possibly with different r and m.

(c) Show that if f is analytic in a neighborhood of Sr and satisfies bounds
of the form (3), and if |Im(z)| < r, then f(z) = f+(z) + f−(z) with

f+(z) =
1

2πi

∫ ∞
−∞

f(u− ir)
u− z − ir

du

f−(z) =
−1

2πi

∫ ∞
−∞

f(u+ ir)

u− z + is
du .

Show that f+ is analytic in the upper half space Im(z) > −r, and
f− is analytic in the overlapping lower half space Im(z) < r. These
satisfy f+(z)→ 0 as Im(z)→∞ and f−(z)→ 0 as Im(z)→ −∞.

(d) Show that one of the following is true whenever Im(w) 6= 0. The one
that is true depends on the sign of Im(w)∫ ∞

0

e−iξw dξ =
1

iw∫ 0

−∞
eiξw dξ = − 1

iw
.

(e) Show that f̂+(ξ) = 0 if ξ < 0 and f̂−(ξ) = 0 for ξ > 0. You may

omit details of the f̂− part, which is similar to the f̂+ part. Warning.
f+ and f− may not satisfy the inequalities (3) even if f does. The
Fourier integrals may not converge absolutely.

(f) Show that

f+(x) =

∫ ∞
0

e2πiξxf̂+(ξ)dξ .

Sketch a similar fact about f− and use this to verify the Fourier
inversion formula (2). Warning. Parts (e) and (f) are hard. Please
do not spend too much time on them.

2. Some standard examples of Fourier transforms are often given as exercises

in contour integration. For each case, calculate (̂f)(ξ) using (1) and ver-
ify the Fourier inversion formula (2) by explicit integration. These have
appeared in earlier exercises, but now you will know why.
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(a) f(x) = e−x
2

(b) f(x) = e−|x|. The calculation of f̂ does not require contour inte-
gration. In fact, f is not analytic, but does have exponential decay.
The solution of Exercise 1(b) shows that the Fourier transform of a
function with exponential decay is analytic in a strip, as this one is.
The f here is not analytic and its Fourier transform does not have
exponential decay.

3. Some basic properties of the Fourier transform follow directly from the
definition.

(a) (scaling) If g(x) = f(λx) then ĝ(ξ) = 1
λ f̂(ξ/λ).

(b) (translation) If g(x) = f(x+ a), then ĝ(ξ) = e−2πiξaf̂(ξ).

(c) (differentiation) If g(x) = f ′(x), then ĝ(ξ) = 2πiξf̂(ξ). (Most differ-
ential equations classes cover Fourier transforms for this reason.)

4. The Direc delta “function” is not a true function but it is an informal way
to derive many facts about Fourier transforms. An informal definition of
this informal function is

δ(x) = lim
ε→0

1√
2πε

e−
1
2εx

2

. (4)

You might think that δ(x) = 0 if x 6= 0, which is a consequence of the
“definition”, would imply that

∫
δ(x)dx = 0. But no!. The definition is

interpreted to imply that∫ ∞
−∞

δ(x)dx = lim
ε→0

∫ ∞
−∞

1√
2πε

e−
1
2εx

2

dx = 1 . (5)

Moreover, if u(x) is a bounded and continuous function, then∫ ∞
−∞

u(x)δ(x)dx = lim
ε→0

∫ ∞
−∞

u(x)
1√
2πε

e−
1
2εx

2

dx = u(0) .

This is interpreted as saying the delta function is a “point mass” at x = 0.
If you think of δ(x) as a density, then the density is zero except at x = 0,
and all the “mass” is concentrated at the point x = 0. The function
δ(x− y) has all of its mass at the point y, in the sense that∫ ∞

−∞
u(x)δ(x− y)dx = u(y) .

This is a consequence of (5) after a change of variables.

Many basic Fourier formulas have informal derivations using the delta
function and change of order of integration in multiple integrals. These
derivations are not rigorous because some of the integrals involved do not
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converge, but they can be made rigorous using ε→ 0 limits as in (5). This
exercise asks you to do the informal, non-rigorous derivations to see how
the world outside of strict academic mathematics uses the delta function.

The fundamental formula behind Fourier analysis is the informal Dirac
formula ∫ ∞

−∞
e2πiξxdx = δ(ξ) . (6)

This is not true in the simple sense that the integral on the left is equal to
the function on the right for each ξ. The integral does not converge and
δ(ξ) is not a function. It is true in a regularized sense hinted at with part
(a). Here is an informal explanation of the Fourier inversion formula (2).
The Dirac formula is used in the next to last step, with integration over ξ
instead of x. The first steps are a change of the order of integration that
is not justified because the integrals do not converge.∫ ∞

−∞
e2πiξxf̂(ξ)dξ =

∫ ∞
−∞

e2πiξx

(∫ ∞
−∞

e−2πiξyf(y)dy

)
dξ

=

∫ ∞
−∞

∫ ∞
−∞

e−2πiξ(x−y)f(y)dydξ

=

∫ ∞
−∞

(∫ ∞
−∞

e−2πiξ(x−y)dξ

)
f(y)dy

=

∫ ∞
−∞

δ(x− y)f(y)dy

= f(x) .

(a) We regularize the plane wave e2πiξx by multiplying by a slow “cut-

off” function ψε(x) = e−
1
2εx

2

. The regularized left side of (6) defines
an “approximate delta function”∫

e2πiξxψε(x)dx = δε(ξ) .

Evaluate δε(ξ) explicitly and show that it converges to δ(ξ) in the
sense of (4).

(b) Derive the Plancharel relation∫ ∞
−∞
|f(x)|2 dx =

∫ ∞
−∞

∣∣∣f̂(ξ)
∣∣∣2 dξ .

Hint. Express |f(x)|2 as a double integral

f(x)f(x) =

∫ ∞
−∞

∫ ∞
−∞

e−2πiξxe2πiηxf̂(ξ)f̂(η)dξdη .

The left side of the Plancharel formula becomes a triple integral.
Change order of integration (not rigorous, but do it anyway) and use
the Dirac relation (6) to simplify.
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(c) Derive the convolution formulas. If h(x) = f(x)g(x), then

ĥ(ζ) =

∫ ∞
−∞

f̂(ζ − ξ)ĝ(ξ)dξ =
(
f̂ ∗ ĝ

)
(ζ) .

The ∗ on the right represents the convolution integral in the middle.
Show that if h = f ∗ g, then ĥ = f̂ ĝ.

5. The Poisson summation formula is

∞∑
n=−∞

f(n) =

∞∑
−∞

f̂(n) (sum over n ∈ Z) . (7)

(a) Prove the Poisson summation formula (7) under the hypothesis that
f satisfies the bounds (3). Hint. Show that the left side is

1

2πi

∫ ∞
−∞

f(x− is)
e2πi(x−is) − 1

dx− 1

2πi

∫ ∞
−∞

f(x+ is)

e2πi(x+is) − 1
dx .

Then get the right side by expressing the fractions as convergent
power series.

(b) The trapezoid rule is the approximation of the integral by a Riemann
sum ∫

f(x)dx ≈
∑

f(xk)∆x .

Suppose xk = k∆x and f is analytic in Sr and satisfies (3). The
error in the trapezoid rule for the integral over the whole line is

R∆x =

∞∑
−∞

f(xk)∆x−
∫ ∞
−∞

f(x)dx .

Show that the trapezoid rule is exponentially accurate in the sense
that there are constants C and m > 0 so that

|R∆x| ≤ Ce−
m
∆x .

Hint. The integral is f̂(0). Interpret the sum using the scaling for-
mula from Exercise 3.

(c) The Jacobi inversion formula a famous application of the Poisson
summation formula, but it is postponed to Assignment 10.
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