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Complex Variables II

Assignment 8

1. The implicit function theorem states that a relation F (w, z) = 0 can “im-
plicitly” determine z as a function of w. Here is a version of this general
principle specialized to the case with F being a complex analytic func-
tion of complex variables z and w. We use subscripts to denote partial
derivatives, so

Fw(w, z) =
∂F (w, z)

∂w
, Fz(w, z) =

∂F (w, z)

∂z
, etc.

These are complex derivatives as usual in complex analysis.

The equation F (w, z) = 0 defines a “curve” in the complex “plane” C2 that
by tradition in this context may be called X. Suppose (w0, z0) ∈ X (i.e.,
F (w0, z0) = 0). Is it possible to solve for w near w0 for z near z0? That
would be to find an open set Ω ⊆ C with z0 ∈ Ω and an analytic function
g defined on Ω so that w0 = g(z0) and if w = g(z) then F (w, z) = 0 (i.e.,
F (g(z), z) = 0). Is this solution locally unique? That would be that there
is an r > 0 so that if |w′ − w| < r and F (w′, z) = 0, then w′ = w.

We can study these questions using informal calculus. Suppose z = z0+∆z
and w = w0 + ∆w. Then (if F is C2 in the appropriate sense)

F (w, z) = F (w0 + ∆w, z0 + ∆z)

= Fw(w0, z0)∆w + Fz(w0, z0)∆z +O
(
|∆w|2 + |∆z|2

)
.

Setting F (w, z) = 0 and ignoring the error term gives

∆w ≈ Fz(w0, z0)

Fw(w0, z0)
∆z .

This suggests that ∆w exists and is uniquely determined by ∆z if

Fw(w0, z0) 6= 0 . (1)

This exercise proves an analytic implicit function theorem under the non-
degeneracy hypothesis (1) and the regularity hypothesis that F is locally
C2, which means that all partial derivatives of F up to second order exist
and are continuous functions of w and z in a neighborhood of (w0, z0) in
C2. These are complex partial derivatives of the kind that imply that F
is analytic in w for any fixed z and analytic in z for any fixed w. The
proof is close to the proof of the inverse function theorem from an earlier
assignment.
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(a) (uniqueness) If z, w and w′ are close enough to z0 and w0 respectively,
and if F (w, z) = 0 and F (w′, z) = 0, then w = w′. Hint.

F (w′, z) = F (w, z) + Fw(w, z)(w′ − w) +O
(
|w′ − w|2

)
.

(b) (existence) Let γ(t) be a contour in the w variable of the form γ(t) =
w0 + reit, for r > 0 but sufficiently small. Define

h(z) =
1

2πi

∫
γ

1

F (u, z)
du .

Show that h(z) is a continuous function of z with h(z0) 6= 0. Show
that for z close enough to z0, there is at least one w close to w0 so
that F (w, z) = 0.

(c) (lemma for analyticity) Suppose H(w, z) is C2 in the sense above
with w in a neighborhood of γ and z in a neighborhood of z0. Define

φ(z) =

∫
γ

H(u, z) du .

Show that φ(z) is a differentiable function of z in a neighborhood of
z0.

(d) (analyticity) Define

g(z) =
1

2πi

∫
γ

uFw(u, z)

F (u, z)
du . (2)

Show that w = g(z) is the locally defined implicit function. Specifi-
cally: F (g(z), z) = 0, g(z0) = w0, and g in defined and analytic in a
neighborhood of z0.

(e) (for Exercise 2) Verify the implicit differentiation formula that mo-
tivated the necessary condition (1):

g′(z) =
dw

dz
=
Fz(w, z)

Fw(w, z)
.

2. Suppose X ⊂ C2 is defined by F (w, z) = 0, where F is a polynomial in w
and z. If p0 = (w0, z0) ∈ X and p1 = (w1, z1) ∈ X, define the euclidean
distance as points in C2 ∼ R4:

d(p0, p1) = |p1 − p0| =
(
|w1 − w0|2 + |z1 − z0|2

) 1
2

.

This makes X a metric space. Define the complex gradient by ∇F (w, z) =
(Fw(w, z), Fz(w, z)). Suppose that ∇F (w, z) 6= 0 if (w, z) ∈ X. Show that
X is an abstract Riemann surface as defined in class. A local coordinate
is a one to one analytic mapping ξ  φ(ξ) = (w(ξ), z(ξ)) ∈ X from an
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open set Ωφ ⊆ C to an open set φ(Ω) = Nφ ⊆ X. Let ψ : η  ψ(η) =
(w(η), z(η)) be another local coordinate that “overlaps” ξ in the sense
that Nφ intersects Nψ. We say that the local coordinates are compatible
if the composite η = ψ−1(φ(ξ)) is a complex differentiable function where
it is defined. We say that z is a local coordinate near p0 = (w0, z0) if
Fw(w0, z0) 6= 0 and the map z  φ(z) = (g(z), z) ∈ X is defined by
Exercise 1.

(a) Show that if p0 ∈ X, then either z or w (or both) is a local coordinate
near p0.

(b) Show that if Fw(w0, z0) 6= 0 and Fz(w0, z0) 6= 0 then the local co-
ordinates z  (g(z), z) and w  (w, h(w)) (the latter also defined
by the implicit function theorem) are compatible. Hint. Part (e) of
Exercise 1 and the inverse function theorem are relevant.

(c) Show that if z is a local coordinate near p0 and p1, and if the neigh-
borhoods overlap, then the local coordinates are compatible.

(d) Show that X is an abstract Riemann surface (a “complex curve”) in
the sense that every point p ∈ X has a local coordinate and any two
local coordinates are compatible if their images overlap.

3. There are connections between complex analysis, algebraic geometry, and
number theory. This is particularly true in the study of Diophantine
equations and corresponding algebraic “varieties”. A Diophantine equa-
tion is a polynomial relation f(x1, · · · , xn) = 0, where f is a polyno-
mial in n variables with integer coefficients, where we seek solutions with
all xk being integers. The basic example is f(x, y, r) = x2 + y2 − r2

(a quadratic polynomial, also called a quadratic form, in three variables
(x, y, r) = (x1, x2, x3)). Integers x, y, r with x2 + y2 = r2 are Pythagorean
triples. Geometrically, a Pythagorean triple represents a right triangle
where all the sides have integer length.

You can divide the relation by r and get an equivalent equation involving
z = x

r , and w = y
r , which is

z2 + w2 = 1 , z, w rational . (3)

If we take z and w to be complex variables, this becomes the equation of
an “curve” in X ⊂ C2. The problem of finding Pythagorean triples may be
formulated as the problem of finding rational points on the Pythagorean
curve X. That is, points (z, w) ∈ C2 which are rational and (z, w) ∈ X. It
turns out that understanding X as a complex curve leads to a recipe for all
Pythagorean triples. This comes from a famous construction that shows
that if you add a point at infinity, then X is equivalent to the Riemann
sphere.

(a) Consider the point (−1, 0) ∈ X. For each number t, consider the
line that connects (−1, 0) to (0, t). This is a line with slope t.
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Show that this line intersects X at exactly one point other than
the “base point” (−1, 0). Call that point F (t). Remark, you can
think of this as “obvious” because the line has the “point/slope”
form {(z, w) with w = 0 + t(z + 1)}. The point is in X if u satis-
fies a quadratic equation, whose coefficients depend on t, with one
solution z = −1. The point you seek is the other solution.

(b) Take t = a
b to be a rational (ratio of integers a and b), clear denomi-

nators in the formulas from part (a) and get a recipe for Pythagorean
triples. Experiment with small a and b to get a few primitive triples
(triples that are not integer multiples of other triples, i.e., x, y, and
r have no common factors).

(c) Let t be a point in the Riemann sphere, S. Show that the map F
from part (a) defines a one to one and onto map from S to X, if
∞ ∈ S is mapped to (−1, 0) ∈ X.

(d) (Not to hand in because it’s lot of not very interesting “routine ver-
ification”, but you should be aware that it’s possible) Show that F
defines an analytic equivalence of the Riemann surfaces X and S.
That is, if p ∈ X maps to q = F (p) ∈ S, and if ξ is a local coordinate
near p and η is a local coordinate near q, then the map ξ  η is an
analytic function.
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