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Complex Variables II

Assignment 7

Corrections. Exercise 2 has been edited to make it more clear and correct
typos.

For this assignment you may use the following theorems without giving proofs.
Riemann mapping theorem. Any simply connected open set Ω ⊂ C with
Ω 6= C is conformally equivalent to the open unit disk.
Bounded convergence theorem (not the most general version) Let f(x, y)
be a continuous function of x ∈ [a, b] for each y ∈ (0, 1). Suppose |f(x, y)| ≤M
for all x ∈ [a, b] and y ∈ (0, 1). Suppose f(x, y)→ 0 as y → 0 for each x. Then∫ b

a

f(x, y)dx→ 0 , as y → 0 .

Notes: f(x, y) need not be defined for y = 0, or you can think of f(x, 0) = 0.
The theorem refers to f(x, y) only for y > 0. The notation y ∈ (0, 1) (the
open interval) reflects this. The upper limit y < 1 is arbitrary in the sense that
any other positive upper limit would be equivalent. The traditional statement
and proof of the bounded convergence theorem involve measure theory, but the
statement here does not involve measure theory, as f is a continuous function
of x so the integral may be taken to be the Riemann integral.

1. This exercise is a review of stuff from Calculus II, but done more carefully.
Prove the following assertions:

(a) Suppose f(x, y) and g(x, y) are continuously differentiable and

∂yf(x, y) = ∂xg(x, y) .

Suppose this holds in an open convex set Ω ⊆ R2. Then there is a
φ(x, y), which is continuously differentiable, so that

∂xφ(x, y) = f(x, y) , ∂yφ(x, y) = g(x, y) .

This holds for all (x, y) ∈ Ω.

(b) Let u(x, y) be twice continuously differentiable and harmonic in an
open convex domain Ω. Then there is a continuously differentiable
complex conjugate function v(x, y), defined in Ω, so that

∂xu(x, y) = ∂yv(x, y) , ∂yu(x, y) = −∂xv(x, y) .

(c) The functions φ and v defined above are unique up to a constant.
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(d) Show that if u is twice continuously differentiable in a neighborhood
of a point, then u is harmonic if and only if u is the real part of
a complex differentiable function defined in a neighborhood of that
point. Conclude that a twice differentiable harmonic function is real
analytic in the sense that the two variable Taylor series identity holds
in a neighborhood of (x0, y0).

u(x, y) =

∞∑
j=0

∞∑
k=0

1

j!k!
∂jx∂

k
yu(x0, y0)(x− x0)j(y − y0)k .

Hint. It may be easier to derive this from the complex Taylor series of
f = u+ iv and the Cauchy Riemann equations than to do it directly.

2. Harmonic functions are an approach to boundary regularity of conformal
maps. The technical core of this is analytic extension of harmonic func-
tions defined in a half space. Let D be the open upper half disk D ={

(x, y) with y > 0, x2 + y2 < 1
}

. The interval B = (−1, 1) is the bottom
boundary of D, more correctly, B = {(x, y) with − 1 < x < 1, y = 0}.
Suppose u is harmonic in D, bounded (there is M with |u(x, y)| ≤ M
for all (x, y) ∈ D). This implies that u is real analytic in D, which is
equivalent to the existence of an analytic function defined in D so that
u = Re(f).

In general, a bounded harmonic function can “act up” at the boundary.
For example, the gradient of a bounded harmonic function does not have
to be bounded. However, this changes if u = 0 on the boundary, because
there is a harmonic extension of u across the boundary. This means that
there is a function, also called u, that is equal to u in D but is defined in a
full neighborhood of B. This puts B in the interior of the region where u is
defined. Since the extension turns out to be bounded, we learn that u is in
fact analytic in a full neighborhood of B. This implies that the harmonic
conjugate is also analytic, so u is the real part of a function that is analytic
in a neighborhood of B. This fact is called boundary regularity, because u
is shown to be “regular” (analytic in this case) “up to the boundary” (in
fact, even across the boundary).

The analytic extension is defined by reflection, which is u(x,−y) = −u(x, y),
for a suitable range of x and y. This anti-symmetric extension implies that
u = 0 if y = 0 (why?). It turns out that, conversely, if u = 0 on B, then
the reflection defines a function for some range of y < 0, which is the har-
monic extension. The textbook has a discussion of harmonic and analytic
continuation, but it isn’t complete. The book by Alfors has an elegant
and complete discussion. The present exercise is loosely based on the dis-
cussion of Alfors. The ultimate goal is to show that conformal mappings
defined by the Riemann mapping theorem are regular up to the boundary.
The proof of the Riemann mapping theorem makes the conformal map-
ping bounded if the image of the mapping is a bounded set such as a disk.
However, it does not imply that the conformal mapping is continuous on
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the closure of the region being mapped. Indeed, derivatives of the map-
ping must “blow up” at the boundary if the boundary is a bad set like the
graph of sin(1/x).

We suppose (for reasons that will be discussed in class and are made clear
in Alfors) that u is bounded on D but we do not assume u is continuous,
or even defined, on D ∪ B (i.e., “up to the boundary”). Instead, we
suppose that u = 0 on B in the sense that u(x, y)→ 0 for any x as y ↓ 0.
This exercise shows that u = 0 on B in this weak sense is enough to
define a harmonic extension that is analytic in a neighborhood of B. The
harmonic extension of u up to and across the whole boundary is given
by the reflection principle (there is more than one “principle” with this
name) u(x,−y) = −u(x, y) for all (x, y) ∈ D ∪ B. The proof is a little
technical because we start not knowing much about u on B.

(a) Let Dr,h ⊆ D be the “radius” r half disk raised by h above the
x−axis. That means that Dr,h is the set elements of D with y > h
and x2 + (y − h)2 < r2. The simple contour on the boundary of
Dr,h has the semicircular part λr,h(t) = ih + reit, 0 ≤ t ≤ π and
the bottom part βr,h(t) = ih + t, −r ≤ t ≤ r. Show that there is a
“Poisson kernel” Pr,h(x, y, ξ, η) so that

u(x, y) =

∫
βr,h

P (x, y, βr,h(t))u(βr,h(t))dt

+

∫
λr,h

P (x, y, λr,h(t))u(λr,h(t))dt .

The first integral on the right may be written as∫ r

−r
P (x, y, t, h)u(t, h)dt .

The second integral on the right also has an explicit expression in
terms of the euclidian coordinates of λr,,h(t). Hint. We have seen
that conformal mappings map Poisson kernel representations on one
domain to Poisson kernel representations on another domain. If
the conformal map is given explicitly, you know its behavior on the
boundary. It is not necessary to find a formula for P , only to under-
stand its qualitative properties.

(b) Show that if (x, y) ∈ Dr,0, and if u = 0 on B in the sense described
above, then you can take the h→ 0 limit of the integral representa-
tions from part (a) to get

u(x, y) =

∫
λr,0

P (x, y, reit)u(reit)dt .

(c) Show that P (x, y, z) is a harmonic function of (x, y) for any z 6= (x, y).
Hint. The property of being harmonic is preserved under conformal
transformations.
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(d) Show that the u represented by the integral of part (b) is analytic
in a neighborhood of a smaller interval on the x−axis, including an
open part of the lower half plane.

(e) Let f(z) be an analytic function with u(x, y) = Re(f(x + iy)) for
(x, y) ∈ D. Show that f(x + iy) has an analytic extension to a
complex neighborhood of the origin, and that this f satisfies the
reflection principle f(x − iy) = f(x + iy) in a neighborhood of the
origin. This shows that f has an analytic continuation to some open
part of the lower half plane.

3. Algebraic functions are functions that arise by solving polynomial equa-
tions whose coefficients are polynomials in z. An example is

f(z) =
√

(z − 1)(z + 1) =
√
z2 − 1 . (1)

The points z = ±1 are branch points. You can think of this informally as
the solution to the equation w2 = z2 − 1. A more generic example would
be

w3 + zw2 + (z + 4− 1)w + z7 + z5 + 1 = 0 .

More famous examples are elliptic curves defined by equations quadratic
in w and cubic in z such as

w2 = z3 + az + b .

This exercise starts the exploration of the quadratic case (1). The slit
plane is the complex plane with the interval (the “slit”) [−1, 1] removed.
The slit is a contour that connects the two branch points.

(a) Suppose (w0, z0) is a solution to w2 = z2−1. Assume z0 is not one of
the branch points. Show that there is an analytic function w = f(z)
defined in a neighborhood of z0 so that w(z)2 = z2 + 1. You may do
this explicitly or with a more generic argument.

(b) Show that there are exactly two functions f±(z) defined in the slit
plane so that f±(z)2 = z2 − 1.

(c) Show that there is no analytic function f(z) that satisfies f(z)2 =
z2 − 1 defined in the complex plane minus the branch points. Hint.
Consider a small circle about the branch point z = 1, γ(t) = a+ reit,
with r small. Show that if f(γ(0)) = f+(γ(0)), and if d

dtf(γ(t))
is what calculus says it should be, then f(γ(2π)) = f1(γ(0)). We
say that this contour goes from one “sheet” of the Riemann surface
defined by (1) to the other sheet.

4. (Partitions, and the generating function here, have led to surprising and
deep mathematics, including amazing theorems of Hardy and Ramanujan.)
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A partition of a positive integer n is a representation of n as a sum of
positive integers. For example, the partitions of 4 are

4 = 1 + 1 + 1 + 1

4 = 1 + 1 + 2

4 = 2 + 2

4 = 1 + 3

4 = 4

We write p(n) for the number of partitions of n. We define p(0) = 1, and
see that p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, etc. The sequence p(n)
determines the generating function

F (z) =
∞∑
n=0

p(n)zn . (2)

If the sum converges, the function F (z) contains information about the
numbers p(n).

(a) Show that the radius of convergence of the power series is at least
r = 1

2 by showing that p(n) ≤ 2n−1. Hint. 2n−1 is the number of
subsets of n− 1 things, which can be spaces between integers k and
k+1. It is possible find a unique subset of these spaces corresponding
to any partition. (Arguments like this are called combinatorial –
deriving equalities or inequalities between combinatorial numbers by
constructing functions between collections of objects.)

(b) Prove the infinite product formula of Euler, which is true if |z| < 1:

F (z) =
1

1− z
1

1− z2
1

1− z3
· · · =

∞∏
n=1

1

1− zn
. (3)

This is true “formally” because

1

1− z
1

1− z2
· · · =

(
1 + z + z2 + · · ·

) (
1 + z2 + z4 + · · ·

)
· · ·

=

∞∑
n=0

anz
n .

The coefficient an is the number of ways zn = zk1zk2 · · · can arise
using zk1 from the first series (1 + z+ z2 + · · · ), zk2 from the second
series (1 + z2 + z4 + · · · ), etc. Think of k1 as the number of ones in
the partition of n, k2 as the number of twos, etc. This exercise asks
you to use these ideas to construct a real proof.
Hints. First prove that the product converges absolutely if |z| < 1.
Then consider finite products

FM (z) =
1

1− z
· · · 1

1− zM
=

∞∑
n=1

qM (n)zn . (4)
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The numbers qM (n) represent the number of partitions of n into
“pieces” not larger than M . For example, q2(4) = 3, corresponding
to the first three partitions listed above. Clearly, qM (n) ≤ p(n), qM ()
is an increasing function of n (why?), and qM (n) = p(n) for large M
(why?). For |z| < 1

2 , the original power series (2) converges and the
“sub-series” converge to it. Next, the Euler product (3) converges
for |z| < 1, so F (z) is an analytic function with a Taylor series that
converges for |z| < 1 (why?).

(c) Show that for any ε > 0 there is a Cε so that

p(n) ≤ Cεeεn , for all n . (5)

(d) Extra credit, don’t waste too much time with this. Find a proof of
(5), or any inequality of the form p(n) ≤ CAn with A < 2, that does
not use complex analysis.
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