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Complex Variables II

Assignment 6
1. This exercise gives another derivation of the Poisson kernel formula for the

disk. We are given a function f(θ) that is a periodic function of θ with
period 2π. We want a harmonic function u(x, y) defined for x2 + y2 < 1
that has the boundary values f . This means that u(r cos(θ), r sin(θ)) →
f(θ) as r → 1 with r < 1. The solution of this boundary value problem
takes the form of an integral1

u(r cos(θ), r sin(θ)) =

∫ 2π

0

P (r, φ)f(θ − φ)dφ (1)

=

∫ 2π

0

P (r, θ − φ)f(φ)dφ .

The Poisson kernel is an integral representation of the harmonic function
u as a convolution of the Poisson kernel P (r, θ) with the boundary data f .
The formula (1) may seem arbitrary, but it has motivations

• u is expressed as an integral involving f because u is a linear function
of f . Suppose that there is a solution to the boundary value problem
(a u for any given f), and that the solution is unique (there is only
one harmonic u with boundary values f). Then the solution is a
linear function of the data, which means that if u1 has boundary
values f1 and u2 has boundary values f2, then u1 +u2 has boundary
values f1 +f2, and cu1 has boundary values cf1 (c being a constant).
If you fix a point (x, y) inside the disk, then the number u(x, y) is
a linear “functional” of the data function f .2 This means that the
values of f along the boundary of the disk should be combined in a
linear way (i.e., integrated) to produce u.

• The boundary value problem is rotation invariant. Informally, if
you rotate the problem by angle α, then the answer to the rotated
problem is the answer to the original problem, rotated by α. More
technically, if u is the harmonic function with boundary values f ,
and if fα(θ) = f(θ+α), then the corresponding harmonic function is
uα(r cos(θ, r sin(θ)) = u(r cos(θ + α, r sin(θ + α)). This implies that
if you have a formula for u when θ = 0, then you get formulas for
other θ by rotation. If

u(r, 0) =

∫ 2π

0

P (r, φ)f(−φ)dφ ,

1The integrals are equal in part because f and P are periodic, so the range of integration
may be any interval in φ of length 2π. Keep this equivalence in mind when doing this exercise.

2Functional means function of a function.
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then (1) applies for other θ values. The minus sign f(−φ) makes the
θ = 0 formula more complicated, but it puts the general formula (1)
into the form of a convolution.

The Poisson kernel function P may be found using Fourier series. We saw
that “any” periodic function f may be expressed as a Fourier series

f(θ) =

∞∑
−∞

ane
inθ , an =

1

2π

∫ 2π

0

e−inθf(θ)dθ . (2)

Therefore, if we can solve the boundary value problem for f(θ) = einθ, then
we can add these solutions to get the solution for a general f . Warning:
The original boundary value problem was for real boundary values f and
real valued harmonic functions u. Now we allow u and f to have complex
values. It will turn out (hopefully!) that you get a real u if the boundary
values are real. Be careful not to think u should be complex analytic as a
function of z = x+ iy just because it has complex values.

(a) Show that u(x, y) = r|n|einθ solves the boundary value problem with
boundary values f(θ) = einθ. Hint. This is “clear” for n ≥ 0, but
for n < 0 you need a trick. You might with with real and imaginary
parts involving cos and sin or you might use the complex conformal
mapping z → 1

z , or you might calculate directly.

(b) Combine this with the Fourier representation (2) to get

P (r, θ) =
1

2π

∞∑
−∞

r|n|einθ =
1

2π

∞∑
1

rneinθ +
1

2π
+

1

2π

−1∑
−∞

r−neinθ .

(c) Add and combine the geometric series from part (b) to get a simple
explicit formula for P (r, θ).

2. (Maximum principle and uniqueness for harmonic functions) Assignment
5 included the mean value formula

u(x0, y0) =
1

2πr

∫ 2π

0

u(x0 + r cos(θ), y0 + r sin(θ)) dθ .

This holds if u is harmonic in a domain that contains the disk of radius r
about the point (x0, y0). Suppose that u is real and

M = max
0≤θ≤2π

u(x0 + r cos(θ), y0 + r sin(θ)) .

(a) Show that u(x0, y0) ≤M and that if u(x0, y0) = M
then u(x0 + r cos(θ), y0 + r sin(θ)) = M for all θ.

(b) Show that if u is harmonic in the open unit disk and continuous in
the closed unit disk, then

max
x2+y2≤1

u(x, y) = max
x2+y2=1

u(x, y) .
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(c) Suppose u and v are both harmonic in the open disk and continuous
in the closed unit disk. Show that if u(x, y) = v(x, y) with x2+y2 = 1,
then u(x, y) = v(x, y) for all (x, y) in the unit disk. Conclude that the
Poisson integral formula (1) gives the unique solution to the boundary
value problem if it defines a continuous function u.

3. Find a formula for the conformal map that takes the upper half disk
H = {z with |z| < 1 , Im(z) > 0} to open unit disk. Hint. One way to
do this: (1) throw 1 to ∞ while preserving the real axis and sending −1
to 0, (2) open the quadrant to a half plane, (3) map the half plane to the
disk.

4. In Exercise 3, the bottom of the half disk, B = {z = x+ iy with x ∈ [−1, 1] , y = 0}
is mapped to an arc of the circle A =

{
w = eiθ with θ0 ≤ θ ≤ θ1

}
. What

arcs are possible? Hint. This is mostly about conformal maps of the disk
to itself.

5. The Chebychev polynomials3 are

Tn(x) = cos(nθ) , x = cos(θ) .

That is, given x ∈ (−1, 1), first you find θ with x = cos(θ), then you use
that θ to define Tn(x). They are used in many sophisticated numerical
algorithms.

(a) Calculate T0 and T1 (for future parts).

(b) Show that Tn+1(x) = 2xTn(x) − Tn−1(x). Hint. cos(nθ + θ) = · · · ,
cos(nθ − θ) = · · · .

(c) Show that Tn(x) is a polynomial of degree n with Tn(x) = 2nxn+· · · .
(d) Show that xn is almost a polynomial of degree n−1 in the sense that

there is a polynomial rn−1(x) of degree n− 1 so that |xn − rn(x)| ≤
2−n if x ∈ [−1, 1]. Hint. |Tn(x)| ≤ 1 for x ∈ [−1, 1], why?

(e) Suppose f(x) is defined for x ∈ [−1, 1]. Define g(θ) = f(x), with
θ and x related as before. Show that if f is analytic in a complex
neighborhood of [−1, 1] in the complex plane, then g(z) is analytic in
a complex neighborhood of the unit circle. Hint. Zhukowsky (sp?)

(f) Show that if f is real analytic as a function of the real variable x in
[−1, 1], then

f(x) =

∞∑
n=0

anTn(x) , with an = Cn

∫ 1

−1
Tn(x)f(x)

dx√
1− x2

.

Find Cn. Show that the sum converges geometrically, in that there
is an M and an r > 0 with r < 1 so that |an| ≤Mrn. The numbers
Cn do not depend on f , but M and r depend on f . Hint. Use part
(e).

3The name is written “Tchebycheff” in German because “ch” pronounced differently. Hence
Tn instead of Cn.
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These properties of Chebychev polynomials make them useful in numeri-
cal computing. Some properties are common to all families of orthogonal
polynomials. The Chebychev polynomials satisfy the orthogonality rela-
tions ∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

= 0 , if m 6= n .

A weight function is a non-negative w(x) with w(x) > 0 for some open set
of x and ∫ ∞

−∞
|xn|w(x) dx <∞ , for all n .

The Chebychev weight function is w(x) =
(
1− x2

)− 1
2 if |x| ≤ 1 and

w(x) = 0 otherwise. Orthogonal polynomials with respect to weight func-
tion w are polynomials Pn(x) of degree n with∫ ∞

−∞
Pn(x)Pm(x) dx = 0 , if m 6= n .

Orthogonal polynomials with respect to the weight function w(x) = 1 for
|x| ≤ 1 and w(x) = 0 otherwise are Legendre polynomials. The weight

function w(x) = e−
1
2x

2

defines Hermite polynomials. Each family of or-
thogonal polynomials satisfies a three term recurrence relation of the form
Pn+1 = cxPn − anPn − bnPn−1. Part (b) gives the specific three term
recurrence relation for Chebychev polynomials. These are remarkable.
Clearly xPn(x) has degree n + 1 so general linear algebra tells us xPn
is a linear combination of the orthogonal polynomials Pn+1, Pn, · · · , P0.
The surprising thing is that only Pn+1, Pn and Pn−1 appear. A general
function may be “expanded” in orthogonal polynomials as

f(x) =
∑
n

anPn(x) , with an = Cn

∫
f(x)Pn(x)w(x) dx .

Part (f) verifies this for Chebychev polynomials.

Other facts are special to Chebychev polynomials. The relation between
Chebychev expansions (part (f)) and Fourier series (part (e)) allows com-
putational methods for Fourier series, such as the Fast Fourier transform
(FFT) to be applied to Chebychev series. This makes Chebychev poly-
nomials more useful than, say, Legendre polynomials for many practi-
cal tasks. The Chebfun computational package is built around Cheby-
chev expansions. Part (d) illustrates the fact that the monomial basis
(1, x, x2, · · · ) is not good for many practical computations. The powers
are linearly independent in the sense of linear algebra, but they are “ex-
ponentially close” to being linearly dependent, as xn is within 2−n of the
subspace spanned by 1, x, · · · , xn−1.
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