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Complex Variables II

Assignment 5

1. This exercise gives a derivation of the Poisson kernel formula for a har-
monic function based on its boundary values. In this version, if φ(x, y) is
bounded and harmonic in a neighborhood of the right half plane (y ≥ 0)
then

φ(1, 0) =

∫ ∞
−∞

P (y, 1)φ(y, 0) dy . (1)

(a) Show that if u is harmonic in a neighborhood of the closed unit disk
then

u(0) =
1

2π

∫ 2π

0

u(eiθ) dθ (2)

Show that this is a consequence of the Cauchy formula for analytic
functions

f(0) =
1

2πi

∫
|z|=1

f(z)

z
dz .

[Please do not use the PDE derivation, which uses Green’s theorem
and/or the divergence theorem. This is complex analysis.]

(b) Show that the mapping w = 1+z
1−z gives a conformal equivalence be-

tween the unit disk and the right half plane, except that z = 1 is
mapped to w =∞.

(c) Show that if φ is bounded and harmonic in a neighborhood of the
right half plane, and if u(z) = φ(z(w)), then the formula (2) holds for
u. Warning: you may have to think about whether φ(z(w)) satisfies
enough conditions for (2) to hold.

(d) Derive the right half plane formula (1) from the circle formula (2) by
changing variables, thinking of z = eiθ as a function of w = iy.

(e) Show that the Poisson formula (1) generalizes to a formula for u(x, 0)
for any x > 0

(f) Let w be an arbitrary point in the open right half plane. Find the
conformal transformation of the right half plane to itself that takes
(1, 0) to w. Hint. This is easy.

(g) Use the result of part (e) to find a formula for φ(w) in terms of its
boundary values φ(0, y) and a kernel function P (y0, x, y) so that

φ(x, y) =

∫ ∞
−∞

P (y0, x, y)φ(y0) dy0 .
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(h) Use the inverse of the map from part (b) to show that there is an
integral formula for the values of a harmonic function u defined for
z inside the open disk:

u(z) =
1

2π

∫
P̃ (z, θ)u(eiθ dθ .

It is not necessary to find a formula for P̃ , only to see that it is
differentiable as a function of z. This allows you to see that

(i) Show that if u is harmonic in the open unit disk and continuous on
the closed unit disk, then u is differentiable in the open disk and

|∇u(z)| ≤ C(z) max
θ

∣∣u(eiθ
∣∣ dθ .

2. An oscillatory integral is an integral whose value is small because of cancel-
lation in the integrand. The Fresnel integral is an example. The integrand
has absolute value 1 over the range [−∞,∞]. The integral of the absolute
value is infinite, but the integral itself is finite, because of cancellations.

F =

∫ ∞
−∞

eix
2

dx =
1 + i

2

√
π ,

∫ ∞
∞

∣∣∣eix2
∣∣∣ dx =∞

The intuition of cancellation may be more clear in the real part:

F =

∫ ∞
−∞

cos(x2) dx . (3)

The integral of cos(t) is zero over a period from 2πn to 2π(n + 1). The
integrand cos(x2) goes through one period when x goes from are xn =√

2π
√
n, to xn+1. The integral over this interval is not exactly zero because

x2 is not a linear function of x,∫ xn+1

xn

cos(x2) dx 6= 0 .

However, some “analytical technique” shows that∫ xn+1

xn

cos(x2) dx = O(|n|−
3
2 ) (4)

This can be used to give a more elementary (no complex analysis) yet
more complicated proof that the infinite domain integral (3) converges.

Assignment 3 gave an example of a real integral of the form∫ b

a

erφ(x)dx
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that whose value is determined (approximately) near x values with φ′(x) =
0, assuming that φ′′ 6= 0 there. This can be true also of oscillatory inte-
grals, though the phenomenon is more subtle to see and to prove. Consider
an integral

A(r) =

∫
eirφ(x)dx . (5)

The function φ(x) is the phase function.1 Places where φ′(x) = 0 are
stationary phase points. Approximating using stationary phase points is
the method of stationary phase. The calculations of stationary phase seem
similar to calculations of the Laplace approximation of Assignment 3, but
the integrands look different, oscillatory here, sharply peaked there).

It may be possible, if the phase function is real analytic, to use the saddle
point method (also called the method of steepest descent, which is not to be
confused with gradient descent optimization). Suppose x∗ is a stationary
phase point (i.e., φ′(x∗) = 0) and φ′′(x∗) 6= 0. Then the simplest non-
constant Taylor approximation of φ near x∗ is

φ(x) ≈ φ(x∗) +
1

2
φ′′(x∗)(x− x∗)2 .

If you use this approximation in the integral (5) and integrate the resulting
Fresnel integral exactly, you get (writing φ∗ for φ(x∗), etc.)

A(r) ≈ eitφ∗

√
2π

±
√
irφ′′∗

. (6)

This saddle point method gives a rigorous justification for this approxi-
mation in some cases.

In class we applied this to the Airy function. Here, we apply it to the
Bessel function

J0(r) =
1

2π

∫ 2π

0

eir cos(x)dx . (7)

(a) Verify the inequality (4).

(b) Identify the stationary phase points in the integral (7). For this, it is
convenient to consider the contour γ0 for (7) as being a real interval
of length 2π that starts and ends somewhere besides 0 or π. Hint
x+ = 0, x− = π.

(c) Show that the integral over γ0 is equal to an integral over a contour
with two pieces γ+ and γ−. These are defined by γ±(x) = (x, y±(x)),
which means, for example, that γ+ is defined “over” a segment of the
real axis. The range for γ+ is −π2 < x < π

2 . The contour γ+ is defined
by Re(φ(γ+)) = Re(φ(x+)) = 1. Choose γ+ so that iφ(γ+(x)) has a
local max at x = x+ = 0.

1 The function eiθ is a periodic function of θ, which means it repeats itself. The number
θ tells you where you are in this repeating cycle. Therefore, θ might be called the “phase”,
thinking of phases of that the moon goes through each four weeks.
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(d) Use the Laplace method from Assignment 3 to show that∫
γ+

eirφ(z)dz

has an approximation of the form (6).

(e) Explain how this needs to be modified to handle the stationary phase
point xπ. You do not have to do all the details, but explain the
similarities and differences between the two cases.
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