Complex Variables II
 Assignment 4

Correction. Exercise 3b and 3c corrected to $S(z)$ instead of $P(z)$.

1. (This is two conclusions from the proof that started in class.) Let $f(z)$ be an analytic function defined in a neighborhood of $z=0$. Suppose $f(0)=0$ and $f^{\prime}(0)=0$. The power series of f about zero converges in a neighborhood of zero:

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} .
$$

Let n be the smallest integer with $a_{n} \neq 0$, so f has a zero of order n at zero.
(a) Show that f is not one to one in any neighborhood of zero. More precisely, show that there is an $r>0$ so that for any positive ρ with $\rho<r$ there are $z_{1} \neq z_{2}$ with $f\left(z_{1}\right)=f\left(z_{2}\right)$. Hint. Let $\gamma(t)=r e^{i t}$ be the radius r contour and consider the winding number

$$
D(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(\zeta)}{f(\zeta)-w} d \zeta .
$$

Then $D(w)=n$ for w close enough to zero and roots of $f(z)=w$ must be simple if is small enough and $w \neq 0$.
(b) (Open Mapping Theorem) Let $\Omega \subseteq \mathbb{C}$ be an open set and f an analytic function defined on Ω. Show that the image of Ω under f is an open set. The image is

$$
\Omega^{\prime}=f(\Omega)=\{f(z) \text { with } z \in \Omega\} .
$$

Hint. Ω^{\prime} is open if every $w_{0} \in \Omega^{\prime}$ has an $r>0$ so that if $\left|w-w_{0}\right| \leq r$ then $w \in \Omega^{\prime}$. If $w_{0}=f\left(z_{0}\right)$ and $f^{\prime}\left(z_{0}\right) \neq 0$, this is a consequence of the local inverse function theorem. See part (a) for the case $f^{\prime}\left(z_{0}\right)=$ 0 .
2. (Fourier series) Let $f(z)$ be an analytic function defined in a domain Ω that contains the unit circle. This implies that there is $R>1$ so that f is analytic in the closed annulus A defined by $\frac{1}{R} \leq|z| \leq R$. Define three circular contours $\gamma_{-}=\left\{|z|=\frac{1}{R}\right\}, \gamma_{0}=\{|z|=1\}$, and $\gamma_{+}=\{|z|=R\}$.
(a) Show that if z is in the interior of A then

$$
f(z)=g(z)-h(z), g(z)=\frac{1}{2 \pi i} \int_{\gamma_{+}} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad h(z)=\frac{1}{2 \pi i} \int_{\gamma_{-}} \frac{f(\zeta)}{\zeta-z} d \zeta, .
$$

(b) Show that g is defined and analytic in the disk $|z|<R$ and has Taylor expansion (note: the contour is γ_{0})

$$
g(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n}=\frac{1}{2 \pi i} \int_{\gamma_{0}} f(\zeta) \zeta^{-(n+1)} d \zeta
$$

Show that for real θ, g has the Fourier series representation

$$
g\left(e^{i \theta}\right)=\sum_{n=0}^{\infty} a_{n} e^{i n \theta}, \quad a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} f\left(e^{i \theta}\right) d \theta
$$

[The integral formulas are also true with g in place of f and may seem more natural that way, but we eventually need them with f.]
(c) Show that h is analytic outside the smaller disk $|z|>\frac{1}{R}$ and had the Laurent expansion. [We use m in the first formula for simplicity. We switch to n in the second formula to make it fit with the formula from part (b).]

$$
h(z)=\sum_{m=0}^{\infty} b_{m} z^{-m-1}, \quad b_{m}=\frac{-1}{2 \pi i} \int_{\gamma_{0}} f(\zeta) \zeta^{m} d \zeta
$$

Show that the sum converges "geometrically", which means there are positive constants C_{1} and C_{2} with $\left|b_{m} z^{-m-1}\right| \leq C_{1} e^{-C_{2} m}$ if $|z| \geq 1$. Show that for real θ, h has the Fourier series representation

$$
h\left(e^{i \theta}\right)=-\sum_{n=-\infty}^{-1} a_{n} e^{i n \theta}, \quad a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} f\left(e^{i \theta}\right) d \theta
$$

(d) Show that if f is analytic in a neighborhood of the unit circle, then

$$
f\left(e^{i \theta}\right)=\sum_{-\infty}^{\infty} a_{n} e^{i n \theta}, \quad a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \theta} f\left(e^{i \theta} d \theta\right.
$$

Show that the sum converges geometrically in the sense that $\left|a_{n}\right| \leq$ $C_{1} e^{-C_{2}|n|}$.
(e) Show that if $\phi(t)$ is real analytic for real t and periodic with period 2π, which means $\phi(t+2 \pi)=\phi(t)$ for all real t, then ϕ has a Fourier series representation of the form

$$
\phi(t)=\sum_{-\infty}^{\infty} a_{n} e^{i n t}, \quad a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n t} \phi(t) d t
$$

3. The Riemann sphere may be identified with the unit sphere in 3D. Let (x, y) be a point in the plane and $(x, y, 0)$ the corresponding point in 3D. The line connecting $(x, y, 0)$ to the "north pole" $(0,0,1)$ intersects the unit sphere at a unique point (ξ, η, ζ). The plane is identified with \mathbb{C} with $(x, y) \longleftrightarrow z=x+i y$, so $|z|^{2}=x^{2}+y^{2}$.
(a) Show that this point is given by the stereographic projection formulas

$$
S(z)=(\xi, \eta, \zeta)=\left(\frac{2 x}{|z|^{2}+1}, \frac{2 y}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right)
$$

(b) Show that $z_{n} \rightarrow z$ as $n \rightarrow \infty$ if and only if $S\left(z_{n}\right) \rightarrow S(z)$.
(c) Show that $\left|z_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$ if and only if $S\left(z_{n}\right) \rightarrow(0,0,1)$ (the north pole).
(d) Let $f(z)=\frac{a z+b}{c z+d}$ be a fractional linear transformation. Define the corresponding map G on the Riemann sphere, $Q=G(P)$, by

$$
P \rightarrow Q=G(P) \text { if } P=S(z) \text { and } Q=S(f(z))
$$

The map G may be expressed as $G=S \circ f \circ S^{-1}$ because it is formed by first going from the sphere to the plane, then using f, then going back to the sphere:

$$
P \longrightarrow S^{-1}(P) \longrightarrow f\left(S^{-1}(P)\right) \longrightarrow S\left(f\left(S^{-1}(P)\right)\right) .
$$

Show that G is a continuous map for all P (including the north pole) and for any fractional linear transformation. Show that G is one to one and onto as long as $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq 0$,
(e) (A lemma for the Riemann mapping theorem) Let $\Omega \subseteq \mathbb{C}$ is an open set and let K be the complement of $S(\Omega)$ in the Riemann sphere. Note that $(0,0,1) \in K$ for any such Ω. Show that if K is not connected, then Ω^{c} (the complement of $\Omega \in \mathbb{C}$) has at least one bounded component. Since Ω^{c} is closed, this bounded component must be compact.
(f) Let Ω be the strip defined by $z=x+i y$ with $|y|<1$, Show that the complement of $S(\Omega)$ in the Riemann sphere is connected.
(g) Define the linear fractional transformation $f(z)=\frac{1}{z}$ and the image of the strip $\Omega^{\prime}=f(\Omega)$. Describe Ω^{\prime} and show that it is simply connected (by the definition that the complement of Ω^{\prime} "in the Riemann sphere" is connected).

