
Complex Variables II, Courant Institute, Spring 2023

http://www.math.nyu.edu/faculty/goodman/teaching/ComplexVariablesII/index.html

Complex Variables II

Assignment 3

1. (This is a version of the Laplace method discussed in class last Tuesday.
A more general version may be easier to understand.)

The Laplace method (one of the tricks called “Laplace method”) is a way
to approximate certain integrals of the form

I(n) =

∫ b

a

enφ(x)dx .

The Laplace method finds an approximate value

I(n) ≈

√
2π

nφ′′∗
enφ∗

The approximation depends on x∗ being a maximizer of φ, with φ∗ = φ(x∗)
and φ′′∗ = φ′′(x). The approximation applies as long as the integration
interval contains x∗. Values −∞ and/or b =∞ are allowed. This Exercise
verifies this under the hypotheses

• (Analyticity) φ(x) is a real analytic function of x for x ∈ [a, b]. This
is equivalent to φ(z) being complex analytic (complex differentiable)
in an open set Ω that contains the real interval [a, b].

• (Convexity) φ′′(x) < 0 for all x ∈ [a, b].

• (Local max) There is an x∗ ∈ (a, b) with φ′(x∗) = 0. To be clear,
a < x∗ < b must be strict inequalities.

The proof breaks the interval [a, b] into three pieces with endpoints a ≤
x1 < x∗ < x2 ≤ b, where the only the middle inequalities need to be strict.

I(n) = J1(n) + J2(n) + J3(n)

J1(n) =

∫ x1

a

enφ(x)dx

J2(n) =

∫ x2

x1

enφ(x)dx

J3(n) =

∫ b

x2

enφ(x)dx

Define values φ1 = φ(x1), φ′1 = φ′(x1), etc. The proof consists of localizing
to a small neighborhood of x∗, with an error bound for the parts left out,
then approximating the central part using a quadratic approximation of
φ.
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(a) (localization error bound) Show that φ1 < φ∗ and that

J1(n) ≤ 1

nφ′1
enφ1 .

Show that φ1 < φ∗ and φ′1) > 0. Find a similar bound for J3.

(b) (Morse lemma for the central part) Show that if |x1 ≤ x∗| and |x∗ ≤ x2|
are small enough, then there is an analytic function y(x) defined
for x1 ≤ x ≤ x2 with y(x∗) = 0 and1 y′(x∗) = 1, y′(x) > 0 for
x1 ≤ x ≤ x2, and

φ(x) = φ∗ +
1

2
φ′′∗y

2 .

This replaces the approximation φ(x) ≈ φ∗ + 1
2φ
′′
∗ (x− x∗)2 with an

exact relation of the same form. Hint. This is almost identical to an
exercise from Assignment 2. You can solve

√
φ(x)− φ∗ = Cy(x) by

factoring out (x− x∗)2 from the Taylor series of φ(x)− φ∗ about x∗.
A trick says that if f(x∗) 6= 0 then there is an analytic

√
f(x) defined

near x∗. Make sure to check that the y(x) is real for real x, which
you might worry about given that we’re using complex analysis to
find it.

(c) Write the middle integral as

J2(n) = C1(n)

∫ y2

y1

e−nC2y
2 dx

dy
(y) dy .

Use dx
dy = 1 +C3y +O(y2) and show that J2 is “accurately” approx-

imated by replacing dx
dy by its two term Taylor approximation then

taking y1 = −∞ and y2 =∞.

(d) Assemble these pieces to prove an inequality of the form∣∣∣∣∣I(n)−

√
2π

nφ′′∗
enφ∗

∣∣∣∣∣ ≤ C

n
3
2

I(n) .

Note that just one of the error terms is as large as the right side of
this inequality. Most are exponentially smaller.

(e) Apply these ideas to Stirling’s approximation

n! =

∫ ∞
0

tne−tdt = nne−n
√

2πn

(
1 +O(

1

n
)

)
.

You can convert to the form of I(n) as we did in class. Be aware that
the φ you get is not analytic at t = 0. What can you do about that?

1This makes y(x) a local near identity transformation, because y ≈ x− x∗ near x∗.
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2. The Fresnel integral with real a is

I(a) =

∫ ∞
−∞

eia
x2

2 dx .

Consider the half integral that goes from 0 to ∞. Suppose a > 0 and
consider contours

γ0(R) = [0, R] , (the real interval)

γ1(R) = [0, (1 + i)R] = {(1 + i)t with 0 ≤ t ≤ R}
γ2(R) = [R, (1 + i)R] = {(R+ i)t with 0 ≤ t ≤ R}

Show that ∫ R

0

eia
x2

2 dx =

∫
γ1(R)

eia
z2

2 dz −
∫
γ2(R)

eia
z2

2 dz

Show that ∫
γ1(R)

eia
z2

2 dz → a finite number as R→∞∫
γ2(R)

eia
z2

2 dz → 0 as R→∞ .

Use these ideas to show that the Fresnel integral with real a converges
(though not absolutely) and find its value for a > 0.

3. The Bessel function of order n and argument r is defined by the integral

Jn(r) =
1

2π

∫ 2π

0

eir cos(θ)−inθdθ .

(Warning. Other definitions of Jn(r) may differ from this in having sin
instead of cos and/or + instead of −. These differences don’t change the
problem.) Show that Jn(r) goes to zero exponentially as n → ∞ for any
fixed r. For this Exercise, a quantity Q is exponentially small if there is
are positive C1 and C2 so that |Q| ≤ C1e

−C2n. Hint. Interpret this as a
contour integral (there are several ways to do that) and move the contour
to make the integrand exponentially small. You are not being asked to
find the actual behavior of Jn(r) as n→∞, though that is possible. You
are just being asked to show it is exponentially small.
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