Complex Variables II, Courant Institute, Spring 2023
http://www.math.nyu.edu/faculty/goodman/teaching/ComplexVariablesII/index.html

Complex Variables II
 Assignment 3

1. (This is a version of the Laplace method discussed in class last Tuesday. A more general version may be easier to understand.)
The Laplace method (one of the tricks called "Laplace method") is a way to approximate certain integrals of the form

$$
I(n)=\int_{a}^{b} e^{n \phi(x)} d x
$$

The Laplace method finds an approximate value

$$
I(n) \approx \sqrt{\frac{2 \pi}{n \phi_{*}^{\prime \prime}}} e^{n \phi_{*}}
$$

The approximation depends on x_{*} being a maximizer of ϕ, with $\phi_{*}=\phi\left(x_{*}\right)$ and $\phi_{*}^{\prime \prime}=\phi^{\prime \prime}(x)$. The approximation applies as long as the integration interval contains x_{*}. Values $-\infty$ and/or $b=\infty$ are allowed. This Exercise verifies this under the hypotheses

- (Analyticity) $\phi(x)$ is a real analytic function of x for $x \in[a, b]$. This is equivalent to $\phi(z)$ being complex analytic (complex differentiable) in an open set Ω that contains the real interval $[a, b]$.
- (Convexity) $\phi^{\prime \prime}(x)<0$ for all $x \in[a, b]$.
- (Local max) There is an $x_{*} \in(a, b)$ with $\phi^{\prime}\left(x_{*}\right)=0$. To be clear, $a<x_{*}<b$ must be strict inequalities.

The proof breaks the interval $[a, b]$ into three pieces with endpoints $a \leq$ $x_{1}<x_{*}<x_{2} \leq b$, where the only the middle inequalities need to be strict.

$$
\begin{aligned}
I(n) & =J_{1}(n)+J_{2}(n)+J_{3}(n) \\
J_{1}(n) & =\int_{a}^{x_{1}} e^{n \phi(x)} d x \\
J_{2}(n) & =\int_{x_{1}}^{x_{2}} e^{n \phi(x)} d x \\
J_{3}(n) & =\int_{x_{2}}^{b} e^{n \phi(x)} d x
\end{aligned}
$$

Define values $\phi_{1}=\phi\left(x_{1}\right), \phi_{1}^{\prime}=\phi^{\prime}\left(x_{1}\right)$, etc. The proof consists of localizing to a small neighborhood of x_{*}, with an error bound for the parts left out, then approximating the central part using a quadratic approximation of ϕ.
(a) (localization error bound) Show that $\phi_{1}<\phi_{*}$ and that

$$
J_{1}(n) \leq \frac{1}{n \phi_{1}^{\prime}} e^{n \phi_{1}}
$$

Show that $\phi_{1}<\phi_{*}$ and $\left.\phi_{1}^{\prime}\right)>0$. Find a similar bound for J_{3}.
(b) (Morse lemma for the central part) Show that if $\left|x_{1} \leq x_{*}\right|$ and $\left|x_{*} \leq x_{2}\right|$ are small enough, then there is an analytic function $y(x)$ defined for $x_{1} \leq x \leq x_{2}$ with $y\left(x_{*}\right)=0$ and $^{1} y^{\prime}\left(x_{*}\right)=1, y^{\prime}(x)>0$ for $x_{1} \leq x \leq x_{2}$, and

$$
\phi(x)=\phi_{*}+\frac{1}{2} \phi_{*}^{\prime \prime} y^{2}
$$

This replaces the approximation $\phi(x) \approx \phi_{*}+\frac{1}{2} \phi_{*}^{\prime \prime}\left(x-x_{*}\right)^{2}$ with an exact relation of the same form. Hint. This is almost identical to an exercise from Assignment 2. You can solve $\sqrt{\phi(x)-\phi_{*}}=C y(x)$ by factoring out $\left(x-x_{*}\right)^{2}$ from the Taylor series of $\phi(x)-\phi_{*}$ about x_{*}. A trick says that if $f\left(x_{*}\right) \neq 0$ then there is an analytic $\sqrt{f(x)}$ defined near x_{*}. Make sure to check that the $y(x)$ is real for real x, which you might worry about given that we're using complex analysis to find it.
(c) Write the middle integral as

$$
J_{2}(n)=C_{1}(n) \int_{y_{1}}^{y_{2}} e^{-n C_{2} y^{2}} \frac{d x}{d y}(y) d y
$$

Use $\frac{d x}{d y}=1+C_{3} y+O\left(y^{2}\right)$ and show that J_{2} is "accurately" approximated by replacing $\frac{d x}{d y}$ by its two term Taylor approximation then taking $y_{1}=-\infty$ and $y_{2}=\infty$.
(d) Assemble these pieces to prove an inequality of the form

$$
\left|I(n)-\sqrt{\frac{2 \pi}{n \phi_{*}^{\prime \prime}}} e^{n \phi_{*}}\right| \leq \frac{C}{n^{\frac{3}{2}}} I(n) .
$$

Note that just one of the error terms is as large as the right side of this inequality. Most are exponentially smaller.
(e) Apply these ideas to Stirling's approximation

$$
n!=\int_{0}^{\infty} t^{n} e^{-t} d t=n^{n} e^{-n} \sqrt{2 \pi n}\left(1+O\left(\frac{1}{n}\right)\right)
$$

You can convert to the form of $I(n)$ as we did in class. Be aware that the ϕ you get is not analytic at $t=0$. What can you do about that?

[^0]2. The Fresnel integral with real a is
$$
I(a)=\int_{-\infty}^{\infty} e^{i a \frac{x^{2}}{2}} d x
$$

Consider the half integral that goes from 0 to ∞. Suppose $a>0$ and consider contours

$$
\begin{aligned}
& \gamma_{0}(R)=[0, R], \quad \text { (the real interval) } \\
& \gamma_{1}(R)=[0,(1+i) R]=\{(1+i) t \text { with } 0 \leq t \leq R\} \\
& \gamma_{2}(R)=[R,(1+i) R]=\{(R+i) t \text { with } 0 \leq t \leq R\}
\end{aligned}
$$

Show that

$$
\int_{0}^{R} e^{i a \frac{x^{2}}{2}} d x=\int_{\gamma_{1}(R)} e^{i a \frac{z^{2}}{2}} d z-\int_{\gamma_{2}(R)} e^{i a \frac{z^{2}}{2}} d z
$$

Show that

$$
\begin{aligned}
& \int_{\gamma_{1}(R)} e^{i a \frac{z^{2}}{2}} d z \rightarrow \text { a finite number as } R \rightarrow \infty \\
& \int_{\gamma_{2}(R)} e^{i a \frac{z^{2}}{2}} d z \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

Use these ideas to show that the Fresnel integral with real a converges (though not absolutely) and find its value for $a>0$.
3. The Bessel function of order n and argument r is defined by the integral

$$
J_{n}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i r \cos (\theta)-i n \theta} d \theta
$$

(Warning. Other definitions of $J_{n}(r)$ may differ from this in having sin instead of cos and/or + instead of - . These differences don't change the problem.) Show that $J_{n}(r)$ goes to zero exponentially as $n \rightarrow \infty$ for any fixed r. For this Exercise, a quantity Q is exponentially small if there is are positive C_{1} and C_{2} so that $|Q| \leq C_{1} e^{-C_{2} n}$. Hint. Interpret this as a contour integral (there are several ways to do that) and move the contour to make the integrand exponentially small. You are not being asked to find the actual behavior of $J_{n}(r)$ as $n \rightarrow \infty$, though that is possible. You are just being asked to show it is exponentially small.

[^0]: ${ }^{1}$ This makes $y(x)$ a local near identity transformation, because $y \approx x-x^{*}$ near x_{*}.

