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Complex Variables II

Assignment 11

1. The two dimensional complex projective space, as a set, is defined to be
the set of equivalence classes of non-zero points Z ∈ C3. We will call it
CP2. We use capital letters such as Z = (Z0 :Z1 :Z2) for elements of C3,
“point” letters like p and q for elements of CP2, and lower case letters
such as z = (z1, z2) for local coordinates on CP2. The equivalence relation
is Z ∼ W if there is an a ∈ C so that Z = aW in C3. We require Z 6= 0
and W 6= 0, which implies a 6= 0. We write [Z] for the equivalence class
of Z:

[Z] = { aZ for all a ∈ C} .

A point p ∈ CP2 is an equivalence class. There are three basic coordinate
patches Uk ⊂ CP2, with Uk being the family of equivalence classes [Z]
with Zk 6= 0. For example, each p ∈ U0 is represented by an equivalence
class [Z] with Z = (1 :z1 :z2). Similarly, a point q ∈ U1 is an equivalence
class of the form [(w1 : 1 : w2)]. The coordinate maps φk : Uk → C2 are
defined using the two coordinates that are allowed to be zero. For example
φ0 : U0 → C2 is defined by φ0([(1 : Z1 : Z2)]) = (Z1, Z2). To explain the
notation φ0([(· · · )]), [(1 :Z1 :Z2)] is the equivalence class of (1 :Z1 :Z2),
and, if p = [(1:Z1 :Z2)] then φ0(p) = (z1, z2), where z1 = Z1 and z2 = Z2.
The coordinate map for U1 is φ1([(Z0 :1 :Z2)]) = (Z0, Z2).

A set A ⊆ CP2 is open if φk(A ∩ Uk) ⊆ C2 is open in the usual sense. In
particular the coordinate patches Uk ⊂ CP2 are open sets. A sequence pn
converges to p as n→∞ if every open set containing p contains all but a
finite number of the points pn.

(a) Show that pn → p in CP2 if and only if there is a unique k (depending
on the sequence) and an N so that if n > N , then pn ∈ Uk and
φk(pn)→ φk(p).

(b) Show that the overlap maps are one to one and differentiable. More
specifically, define U01 = U0 ∩ U1 and V01 ⊂ C2 = φ0(U01), and
V10 ⊂ C2 = φ1(U01). The overlap map ψ01 takes V01 to V10. If
z ∈ V01 ⊂ C2 then w = ψ01(z) means there is a p ∈ U01 so that
φ0(p) = z and φ1(p) = w. Differentiable means that the four partial
derivatives ∂w1

∂z1
, etc., exist in the usual sense of derivatives of analytic

functions of a complex variable. Hint. This is harder understanding
than to solve. Don’t worry if your solution seems trivial.

(c) Show that CP2 is compact in the sense that every sequence has a
convergent subsequence.
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(d) A set D ⊂ CP2 is compact if the three images φk(D ∩ Uk) ⊂ C2

are compact (take this as the definition). Show that D is compact if
and only if any open cover has a finite sub-cover. You may use this
property for C2.

(e) Show that CP2 is simply connected. Warning. Make sure your proof
doesn’t apply to RP2, which is not simply connected.

2. A “curve” in some two dimensional space is either the image of a function
of one variable or the zero set of a non-degenerate function of two vari-
ables. The implicit function theorem says that these pictures are locally
equivalent. A projective curve is a curve in projective space such as CP2.
A projective algebraic curve wants to be the zero set of a non-degenerate
polynomial

X = {[Z] with F (Z) = 0} . (1)

This definition has the problem that if W ∼ Z (i.e., W = aZ in C3

for some a ∈ C) it might be that F (Z) = 0 but F (W ) 6= 0. This is
fixed by requiring F to be a homogeneous polynomial, which means that
every monomial in F has the same degree. In more detail, a monomial
is a product of variables such as Z0 (degree 1), or Z0Z1Z

2
2 (degree 4). A

homogenous polynomial is a linear combination (with complex coefficients)
of monomials of the same degree. Equivalently,

(a) Show that F is a linear combination of monomials of degree d if and
only if F (aZ) = adF (Z) for all Z ∈ C3.

(b) Show that if F is homogeneous of degree d then

F (Z) = d · Z · ∇F (Z) =

3∑
j=0

Zj
∂F (Z)

∂Zj
.

This is (alas!) called “Euler’s homogeneous function theorem”. Euler
got around.

(c) Show that if F is homogeneous of degree d ≥ 1 then (1) defines a
subset X ⊂ CP2. Such as set is called a projective algebraic curve.
Show that such an X is compact.

(d) An affine algebraic curve is defined as the zero set of a polynomial
in two complex variables, such as z22 = z31 − az1 − b (more properly,
f(z1, z2) = z31−az1−b−z22 = 0). Show that any affine algebraic curve
is the intersection of a projective algebraic curve with the coordinate
patch U0 from Exercise 1.

(e) Suppose the affine curve is defined by z22 = z31 − z1 − 1. Show that
this is the intersection with U0 of a projective curve with a polyno-
mial F (Z) of homogeneous degree 3. Write such an F . Show that
the projective curve is a Riemann surface. This involves using the
implicit function theorem (which we used earlier for affine curves) at
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every point of X. Some of these are not in U0, but then they are in
U1 or U2.

3. The Weierstrass P-function is (the Latex command is \wp(z), where “wp”
is for Weierstrass P fnction)

℘(z) =
1

z2
+
∑′

nm

[
1

(z − n−mτ)2
− 1

(n+mτ)2

]
. (2)

The related power sums are called Eisenstein series:

G2k =
∑′

nm

1

(n+mτ)2k
. (3)

You may assume that ℘(z+ 1) = ℘(z) and ℘(z+ τ) = ℘(z). This exercise
gives an approach to the Taylor series of ℘ that illustrates some basic
complex analysis tricks.

(a) Suppose f is a sum of analytic terms

f(z) =
∑
k

ak(z)

and that the sum converges locally uniformly in the sense that for
any R ∑

k

|ak(z)| ≤ C(R) , if |z| ≤ R .

Define the definite integrals starting at z = 0 along any path to z

g(z) =

∫ z

0

f(ζ)dζ , bk(z) =

∫ z

0

ak(ζ)dζ .

Show that the functions g and bk are well defined in the sense that
they are independent of the contour from 0 to z (easy). Show that

g(z) =
∑
k

bk(z) .

Show that the sum converges locally absolutely. Conclusion. You
can do definite integrals of convergent series term by term.

(b) Let anm(z) be the nm term in the ℘ function sum (2). Find a formula
for

bnm(z) =

∫ z

0

anm(ζ) dζ .

(c) Define the Q function (this is not a standard term, the Latex com-
mand is \mathcal{Q}(z))

Q(z) = −1

z
−

′∑
nm

[
1

z − n−mτ
+

1

n+mτ
+

z

(n+mτ)2

]
(4)

Verify by direct calculation without using parts (a) or (b) that the
sum converges locally absolutely and satisfies Q′(z) = ℘(z).
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(d) Show that Q has the Laurent Taylor expansion

Q(z) = −1

z
+

∞∑
k=1

G2kz
2k+1 .

Find the radius of convergence of this series.

(e) Show that Q is not a doubly periodic function even though its deriva-
tive is doubly periodic and its poles form a doubly periodic array (the
period lattice. We showed that ℘ is doubly periodic using the fact
that ℘′ is doubly periodic, but that argument does not apply here.
Why not?

(f) Find the Laurent Taylor expansion of ℘ about z = 0 in terms of the
Eisenstein sums G2k.

4. The Weierstrass P-function is (the Latex command is \wp(z), where “wp”
is for Weierstrass P fnction)

℘(z) =
1

z2
+
∑′

nm

[
1

(z − n−mτ)2
− 1

(n+mτ)2

]
.

The related power sums are called Eisenstein series:

G2k =
∑′

nm

1

(n+mτ)2k
. (5)

You may assume that ℘(z + 1) = ℘(z) and ℘(z + τ) = ℘(z).

(a) Show that if f(z) is an analytic function in a neighborhood of zero

with f(z) = a2z
2+a4z

4+O(|z|6), then f ′(z) = 2a2z+4a4z
3+O(|z|5).

Give an example of a real smooth function g(x) defined for real x that
does not have this property.

(b) Show that ℘(z) = 1
z2 + a2z

2 + a4z
4 + a6z

6 +O(z8) and find formulas
for ak in terms of sk.

(c) Show that

(℘′(z))
2 − 4℘(z)3 = −60G4

1

z2
− 140G6 +O(z2) .

We got the 60 in class but not the 140.

5. The gamma function is

Γ(s) =

∫ ∞
0

ts−1e−t dt . (6)

We saw that Γ(n+ 1) = n! and Stirling’s approximation

Γ(s+ 1) =
√

2πs sse−s
[

1 +O
(
1
s

) ]
, as s→∞ . (7)
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The proof of Sterling we gave may have assumed s is real, but it applies
also when s is replaced with s + iτ and τ is bounded as s → ∞. If s
is not real, ss is interpreted as es log(s) with the branch of log closest to
the “real” one (the real log on the positive real axis). The first few parts
are warm-up. The hard part is finding the convergence factors e−

s
n . The

eventual formula involves the Euler γ constant

γ = lim
n→∞

[
n∑
k=1

1

k
− log(n)

]
≈ .58 . (8)

(a) Show that the integral converges to an analytic function of s if
Re(s) > 0.

(b) Show that the limit (8) exists and is positive. Show that

n∑
k=1

1

k
= log(n) + γ +O

(
1
n

)
. (9)

Hint. The technical bound (9) and the basic limit (8) follow from

1

k
−
∫ k+1

k

1

x
dx = O

(
1
k2

)
.

(c) Show directly that there is an analytic function f(s) defined for s in
a complex neighborhood of 0 so that Γ(s) = 1

s +f(s) for s > 0. [This
is a complicated way of saying Γ has a simple pole with residue 1 at
s = 0.]

(d) Show that for any positive integer n and Re(s) > 1

Γ(s) =
1

s

[
n∏
k=1

1

1 + s
n

]
Γ(s+ n+ 1)

n!
.

(e) For any fixed s show that

Γ(s+ n+ 1)

n!
= ns

[
1 +O

(
1
n

) ]
(f) Show that

n =

(
n∏
k=1

e
1
k

)
e−γ

[
1 +O

(
1
n

)]
(g) Put these facts together and take the n → ∞ limit to derive the

Euler product for the gamma function

Γ(s) =
e−s

s

∞∏
k=1

e
s
k

1 + s
k

. (10)
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Show that the product converges (locally uniformly) absolutely for
any s /∈ Z and defines a meromorphic function in the whole com-
plex plane. Said with different emphasis, the infinite product (10)
defines a meromorphic function that is an analytic continuation of
the integral (6) from the right half plane to the whole plane.

(h) Derive the weird Euler formula (there are many weird Euler formulas)

sΓ(s)Γ(−s) =
π

sin(πs)
.

You may use the product formula for sin(πs). Remark. This formula
relates factorials (the gamma function) to trig functions. Euler also
discovered a formula relating exponentials to trig functions: eix =
cos(x) + i sin(x). Both formulas require extending some function
(factorial, exponential) beyond its original range of definition.
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