Practice for Quiz 1

If you know your stuff, this should take about an hour. The actual quiz will be about a quarter this long and should take about fifteen minutes.

- 1. True or false: in each case, state whether the statement is true or false and give a brief explanation. For a statement to be true, it must be true in every case. An easy way to show a statement is false is to give a counterexample, a single case in which it does not hold.
 - **a.** If f(x) is a continuous at x=2, then f is differentiable at x=2.
 - **b.** If $\lim_{x\to a} u(x)$ and $\lim_{x\to a} v(x)$ exist, then $\lim_{x\to a} u(x)v(x)$ also exists.
 - **c.** The function $f(x) = \sqrt{|x|}$ is differentiable at x = 0.
- 2. Evaluate the following limits:

a.
$$\lim_{t \to 3} t^2 + \frac{1}{t}$$
.

b.
$$\lim_{x \to 1} \frac{2x^2 + x + 2}{3x - 4}$$
.

c.
$$\lim_{x \to -2} \frac{x^2 + 3x - 2}{x^2 - 4}$$
.

d.
$$\lim_{t\to 0} \frac{1}{1+\frac{1}{1+\frac{1}{x}}}$$
. Hint: This is hard. Try multiplying top and bottom by

r a few times

e.
$$\lim_{h\to 0} \frac{f(x+3h)-f(x)}{h}$$
, where $f'(x)=2$.

- **3.** Compute the derivative of $f(x) = (x^2 + 1)(x^2 1)$ in two ways and check that the result is the same:
 - **a.** Multiply out the expression $(x^2+x)(x^2-x)$ and apply a differentiation formula to each term.
 - **b.** Find the derivative of $u(x) = x^2 + x$ and of $v(x) = x^2 x$, then use the product rule.
- 4. Suppose n(t) is the number of bacteria (measured in millions) in a container at time t, and u(t) is the rate at which food is added to the container (measured in grams per hour) and consumed by the bacteria. Let R be the rate at which n(t) is increasing and S be the rate at which u is increasing. The amount rate at which a single bacterium consumes food is f(t) = u(t)/n(t).

- **a.** Express R and S as derivatives.
- **b.** Find an expression for the rate of change of f(t) in terms of n, u, R, and S.
- **5.** Use the formal rules of differentiation to find the derivatives of each of the functions below. The derivative should be correct at every place where the function is differentiable.

a.
$$f(x) = x^3 - 5x^2$$
.

b.
$$f(x) = \frac{x+2}{x-3}$$
.

- **c.** $f(x) = \left(\frac{1}{x^4} x^4\right)^2$ (hint: write this as a product and use the product rule).
- **6.** Make a careful sketch of the graph of the function f(x) with values

	x	0	.2	.4	.6	.8
Ì	f	.20	.36	.60	.92	1.32

- **a.** Using a ruler or straight edge, draw the line tangent to the curve at x = .4. Read the slope of the line from the graph.
- **b.** Estimate the slope using an appropriate $\Delta f/\Delta x$.
- **c.** Give one or more reasons for the answers to a. and b. to be a little different.