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Motivation

This first class is a combination of hints about algebraic reasoning and mo-
tivation for the subject.

Modern algebra is built on powerful abstract ideas. To understand how they
work, you should have an idea what they’re about. General algebraic structures,
such as groups and vector spaces, all are generalizations of many different spe-
cific situations. You find your way around abstract objects by thinking about
specific concrete realizations and looking for their “lifts” to abstract situations.
Something may seem obscure in one situation but completely natural in another.
The “big picture” is not just the sequence of definitions and theorems, but the
specific problems that motivate them and their application to solving concrete
problems.

1 Fermat’s last theorem

Fermat’s last theorem is a math problem that motivated much of present day
abstract algebra, directly or indirectly.

Sometime in the late 1600’s in southern France, a lawyer and amateur math-
ematician (Fermat) was reading 1500 year old book about numbers. The book
described right triangles where the “squares” (geometric squares, not second
powers of integers) had sides with integer lengths. The algebraic formulation
x2 + y2 = z2, with x, y, and z being integers, had been given more recently,
in the early 1600’s. There are many such triples, including pythagorean triples,
including 3,4,5 (because 32 + 42 = 52) and 5, 12, 13 (because 25 + 141 = 169).
As we will see, there is a formula for all pythagorean triples.

Fermat thought about this for a while and made a note to himself that this
can’t happen with powers higher than 2. The note said that are no triples
xn + yn = zn with positive integers x, y, z and n ≥ 3. It also said that he knew
a proof, but the proof was not in the note. Today, the majority expert opinion
is that Fermat found a mistake in his proof, but did prove it for n = 4, he wrote
it down later, and possibly for n = 3. When Fermat died, his notes were found
and published.

You can wonder why Fermat’s “theorem” became a central problem of math-
ematics while other problems from that era didn’t. The Goldbach conjecture, for
example, is just as simple: every even number n = 2k > 2 may be written as a
sum of two prime numbers: n = p+q (4 = 2+2, 100 = 89+11 = 83+17 = · · · (p
and q are not unique), etc.). One reason, I think, is that there was always
“progress” toward the Fermat theorem. It is possible to prove specific cases,
and to “reduce” to problem to more general abstract problems that seem inter-
esting in themselves. Work on the Fermat problem was incredibly interesting
(to mathematicians) even if it didn’t solve the Fermat problem.
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Here is a simple illustration, a proof that if x4+y4 = z4 with positive integers
x and y, then x or y must be divisible by 5. We use the little Fermat theorem and
modular arithmetic described in Subsection 1.1. It is a proof by contradiction.
a 6≡ b We assume that x 6≡ 0 and y 6≡ 0 mod 5 and get a contradiction. If x 6≡ 0
and y 6≡ 0 mod 5, then x4 ≡ 1 and y4 ≡ 1 mod 5 (Fermat’s little theorem).
Therefore, z4 = x4 + y4 ≡ 1 + 1 ≡ 2 mod 5. But the equation z4 ≡ 2 mod 5 has
no solutions. The little Fermat theorem implies that z4 ≡ 1 (if z 6≡ 0) or z4 = 0
(if z ≡ 0) are the only possibilities. Exercise 1 takes reasoning like this a step
further.

A diophantine equation is an equation involving powers of several integer
variables. They are named for Diophantus (dead by 300 AD), the guy who
wrote the book Fermat was reading. The theory of diophantine equations makes
great use of modular arithmetic, prime factorization, and little Fermat. That’s
one of the reasons it gets so much attention in abstract algebra. This class will
use the trick of reducing mod p a few times. One is for Eisenstein’s criterion
which is a way to find integer coefficient polynomials that cannot be factored
over the integers (Chapter 12 in the text).

1.1 Modular arithmetic, Fermat’s little theorem

First a review of modular arithmetic then the little theorem.
All numbers in this section are assumed to be integers. We say a = b (mod) n

if a = b+ kn for some (integer) k. This might be expressed in other ways, such
as a ≡ b (mod) n, particularly when we need to distinguish between equal mod
n and equal as integers. We often neglect to say “(mod) n” when it is clear
in context. We will take for granted the basic facts of modular arithmetic:
a(b + c) = ab + ac, if a = b then ac = bc and a + c = b + c (all (mod) n). As
an example, mod 4, 3 = −1 so 32 = (−1)2 = 1. This might be simpler than
32 = 9 = 1 (mod) 4.

Arithmetic mod p (a prime) is special because ab = 0 (mod) p only if a = 0
or b = 0 (or both). This is not true otherwise (example mod n = 6: 2 6= 0 and
3 6= 0, but 2 ·3 = 0). This is a property of prime numbers emphasized in Section
11.1 of the Artin text: if p divides ab (meaning ab = kp for some k), then p
divides a or p divides b (or both). Also, “a = 0 (mod) p” and “p divides a” are
equivalent, because both mean a = kp for some k.

This fact about arithmetic mod p has a consequence that is used to under-
stand arithmetic of non-zeros mod p. If you multiply by different numbers, you
get different answers. More precisely, if c 6= 0 then ac 6= bc if a 6= b. On the
other hand, if c = 0 (always mod p), then ac = bc = 0 no matter what a and b
are. Here’s the reasoning: if a 6= b then a − b 6= 0. If c 6= 0 then (a − b)c 6= 0.
But remember that if (a − b)c = ac − bc 6= 0, then ac 6= bc. That’s what we
wanted to show. The text calls this the cancellation property: if ac = bc and
c 6= 0, then you can “cancel” c and get a = b.

The term “Fermat’s little theorem” can refer to several related facts about
powers mod p. One is that any integer x has xp = x (mod) p. Take, for example,
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x = 10 and p = 7. You get that ten million equals ten mod 7. I can check this
using Python:

>>> 1428570*7 + 10

10000000

How did Fermat check it?
Another “little Fermat” fact is that if x 6= 0 (mod) p, then xp−1 = 1 (mod) p.

This implies xp = x (mod) p because if x 6= 0 (leaving out “(mod) p” for sim-
plicity) then xp = x ·xp−1 = x · 1 = x. We are taking for granted the basic facts
of modular arithmetic: if a = b, then ac = bc and a+c = b+c (all (mod) p). On
the other hand, if x = 0, then xp = 0 ·0 · · · · = 0, so again xp = x. As examples,
106 = 1 (mod ) 7 (check: 1,000,000 − 1 = 999,999 = 142,857 · 7), and 477 = 0.
It matters that p is prime. It might not be true that xn−1 = 1 (mod) n when
x 6= 0 (mod) n if n is not prime. For example, take x = 2 and n = 6. You
can calculate that xn−1 = 25 = 32 = 2 6= 1 (mod) 6. In retrospect you didn’t
have to calculate: any power of 2 is even mod 6 so it can not equal 1. The two
versions of little Fermat are equivalent. If x 6= 0 then the cancellation principle,
applied to xp = x yields xp−1 = 1. Conversely, xp−1 = 1 then xp = x.

Later in the course there will be a proof of little Fermat that explains “why
it’s true”. The argument here is both clever and mysterious – a proof without
enlightenment. Consider the product of all p − 1 non-zero “residues” mod p.
That is R = 1 · 2 · · · · · (p − 1). Let Rx be what you by multiplying each of
these by x and then multiplying the whole thing together. Re-ordering the p−1
factors, you see that

Rx = (1 · x)(2 · x) · · · · · (p− 1)x

= xp−1 · 1 · 2 · · · · · (p− 1)

Rx = xp−1R .

On the other hand, no two residues xj and xk in the R product are equal.
Indeed, if j 6= k and both are among {1, 2, · · · , p− 1}, then j 6≡ k (mod) p.
Therefore (using the necessary hypothesis x 6≡ 0), xj 6≡ xk. Thus, the residues in
the Rx product are a rearrangement of the residues in the R product. Example,
with x = 3 and p = 7, the Rx product is

(x · 1) · (x · 2) · (x · 3) · (x · 4) · (x · 5) · (x · 6) = 3 · 6 · 9 · 12 · 15 · 18

≡ 3 · 6 · 2 · 5 · 1 · 4 .

The last line is a re-arrangement of R = 1·2·3·4·5·6. Now we have Rx = xp−1R
and Rx = R. Together, these give R = xp−1R. Exercise 2 fills in a small missing
detail of this argument.

2 Primes in rings of algebraic integers

Euler (possibly Fermat before him, though without leaving a clear record) in-
troduced a new method into algebraic number theory, as it’s now called. He
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worked with algebraic integers rather than the usual integers, now called rational
integers. He used a primitive cube root of unity

ζ3 = e2πi/3 = −1

2
+
i
√

3

2
, ζ33 = 1 .

He showed that
x3 + y3 = (x+ y)(x+ ζ3y)(x+ ζ23y) . (1)

This can be verified with direct calculations, You can compare this to the fancier,
more general method of exercises 3 and 4.

Euler attacked the case n = 3 of Fermat’s last theorem using the factoriza-
tion. He showed that positive integers x, y, z cannot satisfy

(x+ y)(x+ ζ3y)(x+ ζ23y) = z3 .

For this, he used prime factorization in the ring Z[ζ3], which is the ring complex
numbers a + ζ3b with a and b being rational integers. The notation Z[ζ3] will
be explained next class. Euler and others made the mistake of thinking Z[ζp],
where ζp = e2πi/p is a primitive pth root of unity, also has unique factorization
into primes. It usually doesn’t.

To start, you can assume that the prime factorizations of x, y, and z have
no primes in common. For example, if x = pa and y = pb, and x3 + y3 = z3,
then you get p3a3 + p3b3 = z3, so z3 = (a3 + b3)p3. This implies that the
factorization of z also contains p, which can be written as z = pc. The p factors
out, leaving a3+b3 = c3. This argument illustrates a way Fermat thought about
what we now call “mathematical induction”. You want to show that there are
no numbers satisfying a certain relation. You argue by contradiction. If there
are solutions, there must be a smallest solution. You get a contradiction by
constructing a smaller solution. In this case, you start with x, y, z and you get
a, b, c, which are smaller. The smallest n = 3 “Fermat triple” are mutually
relatively prime.

Euler showed that the three factors x+ y, x+ ζ3y and x+ ζ23y can be taken
to be relatively prime in Z[ζ3]. It is common to use π for a prime in Z[ζ3] and
p for a rational prime. If π ∈ Z[ζ3] is a prime factor of x+ y, then x+ y = απ,
for some α ∈ Z[ζ3]. If the same π is a factor of x+ ζ3y, then x+ ζ3y = βπ. You
can eliminate y

x+ y = απ

x+ ζ3y = βπ

ζ3x+ ζ3y = ζ3απ

x+ ζ3y = βπ

(ζ3 − 1)x = (ζ3α− β)π

The right side at the end is the prime π multiplied by some (algebraic) integer
in Z[ζ3]. This shows that either π divides ζ3 − 1 or π divides x. A simpler
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calculation leads to (ζ3 − 1)y = (β − α)π. Therefore, if π does not divide
ζ3−1, then π is a common factor in both x and y. This would imply (argument
omitted) that x and y have a common rational prime factor, which would be a
contradiction.

That leaves the possibility that π divides ζ3 − 1. We will not rule that out,
but take it as an excuse to look more at primes and prime factorization in Z[ζ3].
We show that ζ3 − 1 is prime. Observe that any α = a+ ζ3b ∈ Z[ζ3] has square
magnitude (as a complex number) that is an integer. For this calculation, we
use the fact that ζ3 = ζ23 . You can verify this by calculating:

ζ3 = e2πi/3 = e−2πi/3 = e4πi/3 = ζ23 .

Or, you could just check

ζ3 = −1

2
− i
√
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2
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(
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We also use the identity 1 + ζ3 + ζ23 = 0, but in the form ζ3 + ζ23 = −1. Exercise
6 gives a proof that isn’t direct verification. With this, we calculate and get an
integer answer if a and b are rational integers:

|α|2 = αα

= (a+ ζ3b)(a+ ζ3)b

= (a+ ζ3)(a+ ζ23b)

= a2 + (ζ3 + ζ23 )ab+ ζ33b
3

= a2 − ab+ b2 .

Finally, you can calculate

|ζ3 − 1|2 = (ζ3 − 1)(ζ23 − 1)

= ζ33 − ζ3 − ζ23 + 1

= 1 + 1 + 1− (1 + ζ3 + ζ23 )

= 3 .

This is a rational prime. If factors in Z[ζ3] as ζ3 − 1 = αβ, then either |α| = 1
or |β| = 1.

Similar reasoning shows that ζ23−1 also is prime. It turns out to be essentially
the same prime. We say that elements α and β are associates if α = uβ, where
u is a unit. A unit is an invertible element. That is, u is a unit if there is a v
with uv = 1. The units in Z are just ±1, but other algebraic number rings have
more. Most statements about factorization in algebraic number rings involve
units. For example, α is irreducible if α = βγ only if β and/or γ is a unit. We
would have to do this in Z also if we worked with positive and negative integers,
not only positive ones. It turns out (Exercise 8) that ζ3 − 1 and ζ23 − 1 are
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associates. This implies that 3 = u(ζ3−1)2, where u is a unit in Z[]ζ3]. A prime
(p = 3 in this case) that is a power of a prime in an algebraic number ring (up
to a unit) is said to be ramified. Only finitely many primes are ramified in any
algebraic number ring (famous theorem).

3 Exercises

1. Show that x4 + y4 = w2 is impossible if x 6≡ 5 and y 6≡ 5. You can
do this by looking at all possible values of w2 mod 5. Fermat proved
that x4 + y4 = z4 is impossible among positive integers by showing that
x4 + y4 = w2 is impossible.

2. Prove that R 6≡ 0 (mod) p. It may be easier to prove the more general
fact that any product of non-zero residues mod p is non-zero. You know
it’s true for two factors. You can use induction to prove it for more than
two factors.

3. Prove Euler’s factorization formula (1). Hint. Let x be a fixed parameter
and let f(y) and g(y) be the polynomials f(y) = x3 + y3 and g(y) =
(x + y)(x + ζ3y)(x + ζ23y), which are the left and right sides of the Euler
formula (1). Show that f(y) = g(y) when y = −x, y = −ζ3x, y = −ζ23x,
and y = 0. If x 6= 0 (oops!, forgot that hypothesis, which is satisfied in the
target formula (1) because x is a positive integer), this makes four distinct
y values where f(y) = g(y). But f and g are cubics, so . . . .

4. Suppose n 6= 3. Find the analogue of Euler’s factorization (1) that works
for n. This should lead you to define what is meant by a primitive nth

root of unity. For example, for n = 4, ζ = ±i are primitive fourth roots
but ζ = −1 is not. Your formula should work only for primitive roots.

5. Suppose R is a ring and S ⊂ R. Suppose that S is closed under addition,
multiplication and additive inversion. This means that if x ∈ S and
y ∈ S then x + y ∈ S, xy ∈ S, and −x ∈ S. Finally, suppose 1R (the
multiplicative identity of R) is in S. Show that S is a ring. Show that
Z[ζ3] ⊂ C is closed under addition, multiplication, and additive inverse
and contains the multiplicative identity. Conclude that Z[ζ3] is a ring.
[Note. This R ⊂ S approach may seem more complicated than direct
verification that Z[ζ3] is a ring, which is simple. The only benefit is that
you don’t have to verify that addition and multiplication are associative
and distributive.]

6. The numbers ζkn are the roots of the polynomial f(x) = xn − 1. Any
polynomial may be expressed in terms of its roots using f(x) =

∏
(x−ak).

Show that f(x) = xn − (
∑
ak)xn−1 + · · · . Use this to show that the sum

of the roots of unity is equal to zero without using complex numbers.

7. The set of units in a ring R is written R∗ (or R× or something similar).
Show that R∗ is an abelian group (easy). Suppose that R∗ = Z[

√
2]. Show
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that R∗ ∼= Z× Z/(2). More concretely, show that x ∈ R∗ is a unit if and
only if x = ±(1 ±

√
2)n for some n. Hints. Suppose x = a +

√
2b. You

can show that x is a unit if and only if N(x) = (a +
√

2b)(x −
√

2b) =
a2 − 2b2 = ±1. This implies that a unit has |a| ≤

√
2|b| + 1. Show that

c +
√

2d = (1 ±
√

2)(a +
√

2b) may be chosen to have |d| < |b| unless
b = 0. Suppose r, a, and b are integers, and a2 − 2b2 = r. Explain how to
generate an infinite set of integer solutions c2 − 2d2 = r (same r).
Comments on this exercise.

(a) R∗ is infinite, while the group of units in Z[ζ3] is isomorphic to Z/(6),
in particular, finite.

(b) There is a better proof (more general, less ad-hoc) in the textbook
that uses more information about the structure of Z[

√
2].

(c) Famous theorem of Minkowsky: the group of units in any ring of
algebraic integers is finitely generated, not just quadratic number
rings treated in the text. Chapter 14 of the text has a proof that a
finitely generated abelian group is isomorphic to a product of finitely
many factors, each factor being Z or Z/(n) for some n.

(d) N(x) is the norm of x. Chapter 16 of the text defines N(x) for a alge-
braic number field, if it’s “complete” (technically, a Galois extension)
as the product of the symmetric images of x under the Galois group:
N(x) =

∏
σ(x), σ ∈ Gal. In our examples, Gal ∼= Z/(2) with one

element being the identity and the other being “conjugation”, either√
2 → −

√
2 or ζ3 → ζ3. This leads to N(a + ζ3b) = a2 + b2 − ab.

The formula for N(x) depends on which extension it is in, but the
formulas we used are always true: N(x) ∈ Z and N(xy) = N(x)N(y)
if x is an algebraic integer.

8. Show that the six units in Z[ζ3] have the form e2πik/6. Find formulas for
them in terms of ζ3 and ζ23 . Use the identity ζ23 − 1 = (ζ3 − 1)(ζ3 + 1) to
show that ζ23 − 1 and ζ3 − 1 are conjugate.

9. Tricks with polynomials can lead to interesting identities. Here are some
involving arithmetic mod p.

(a) Let f(X) = Xn + · · · + a0 be a monic polynomial over a field F.
Suppose ak ∈ F for k = 1, · · · , n are distinct (aj 6= ak if j 6= k).
Suppose that these are all zeros of f , which means f(ak) = 0 for
1 ≤ k ≤ n. Show that f(X) = (X − a1) · · · · · (X − an). Hint. One
way uses induction on n and polynomial division: f(a) = 0 implies
that f(X) = (X − a)g(X) with deg(g) = deg(f)− 1. Warning. It is
possible for polynomials to have the same values without being equal
as polynomials. A proof has to avoid this pitfall.

(b) Show that, in Fp (the finite field Z/(p)).

Xp−1 − 1 =
∏
a6=0

(X − a) . (2)

7



The product is over all non-zero residues in Fp.
(c) Is this identity true in Z[X]? Hint. Try it, maybe with p = 3.

(d) Use the identity in Fp to show that

S1(p) =

p−1∑
k=1

k

is divisible by p. First prove it by comparing the coefficients of Xp−1

on both sides of (2). Then prove it using the simple formula for the
sum.

(e) Prove the formula (p − 1)! = −1 (mod ) p. Verify this explicitly for
p = 7 (calculate 7! + 1 and find a factor of 7).
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