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Check the class forum for corrections and hints

Assignment 9

Due: Thursday, April 21.

A cyclotomic example. A field extension F/Q is cyclotomic if it is generated
by roots of unity. They are also called abelian because the Galois group (to be
defined) is abelian. Let ζn = e2πi/n be our usual primitive nth root of unity.
We will see, in general, that [Q[ζn] : Q ] = φ(n), where φ is the Euler totient
function that counts the number of residue classes mod n that are relatively
prime to n. The minimal polynomial of ζn is denoted Φn(x) and is called a
cyclotomic polynomial. As we will see, the other roots of Φn are the other
primitive nth roots ζkn, where k is relatively prime to n. In gcd notation, this is
gcd(k, n) = (k, n) = 1.

Φn(x) =
∏

(k,n)=1

(x− ζkn) . (1)

The product over k with (k, n) = 1 means a product over all such residue classes.
This is equivalent to taking all k with 1 ≤ k < n that are relatively prime to
n. Galois theory gives a general way to show that Φn ∈ Q[X], (a fancy way of
saying it has rational coefficients), and Exercise 2 gives an ad hoc proof for this
case. Galois theory also gives a quick proof that the Φn are irreducible over Q.
I don’t know whether there is an ad hoc proof of that which does not use Galois
theory. Maybe you can find one. Maybe you can show that the Φn have integer
coefficients.

The roots of unity ζkn, even the ones that are not primitive, are the n distinct
roots of fn(x) = xn−1. If ζkn is not a primitive root nth root, then it is a primitive
mth root, where m is some divisor of n. This in written as(

ζkn
)m

= 1 , for some m|n ,
(
ζkn
)r 6= 1 , 0 < r < m .

The degree of Φn is the number of primitive roots, which is φ(n). If ζkn is not a
primitive root of unity, then it is a primitive root of some divisor of n (Exercise
1).

1. Let m be the smallest positive integer exponent with (ζkn)m = 1. Show
that if m 6= n (so ζkn is not a primitive root) then m|n and km = n. Show
ζkn is a primitive mth root of unity.

2. Prove two facts about cyclotomic polynomials using Fermat style induc-
tion on n. That means: show they are true for n = 1 and then look at the
smallest n where one or both of them might not be true. The first is the
factorization formula

xn − 1 =
∏
m|n

Φm(x) . (2)
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In (2), you have to count m = 1 and m = n as divisors of n. The sec-
ond fact is that the coefficients in Φn are all rational. Hint (for the second
part), The Euclidean and polynomial division algorithms for rational poly-
nomials use only rational operations. Therefore, if f and g are “rational”
(in Q[X]), then h = gcd(f, g) is rational. If f and g are rational and g|f
in an extension field of Q, then g|f in Q.

3. Find the cyclotomic polynomials Φm for m|8. Find the primitive 8th roots,
4th roots, 2nd, roots, and 1st root, and verify (1) by direct calculation.
Verify (2) by direct calculation.

4. Find the “cartesian” formula for ζ8 (that is, ζ8 = a+ bi), and:

(a) Show that Q[ζ8] = K[
√

2], wth K = Q[i].

(b) Show that [Q[ζ8] : Q ] = 4.

(c) Find an explicit basis for Q[ζ8] over Q.

Algebraic closure. A field F is algebraically closed if every f ∈ F[X] has a
root in F. We say that F is an algebraic closure of F if F is algebraically closed,
F ⊆ F, and every α ∈ F is algebraic over F. We might say “the” algebraic
closure, because any two algebraic closures are isomorphic over F. Philosophers
can debate saying “the” or “an” for something that is unique up to isomorphism.
You can construct an algebraic closure by repeatedly adjoining roots. But it can
be subtle to say this correctly when you have to adjoin uncountably many roots
possibly in uncountably many stages. Therefore, this exercise is for countable
fields only, such as Q, finite fields, or fields of rational functions over countable
fields.

1. A set is countable if it is possible to make a list of its elements, with the
list being indexed by the positive integers, as in

A = {a1, a2, . . .} = {an | n ∈ Z , n > 0} .

Repetition (i.e. aj = ak with j 6= k) is allowed. Show that if A1, A2, · · · is
a countable family of countable sets, then the “whole thing” is countable:( ⋃

m>0

Am

)
is countable.

2. Show that if F is countable, then F[X] is countable.

3. (Read Section 15.2 before doing this Exercise.) Let F be a field and
f ∈ F[X] a polynomial of degree n. Show that there is an extension field
K/F that is a splitting field for f over F. By definition, K is a splitting
field if f factors (splits) into a product of linear factors in K,

f(X) =

n∏
j=1

(X − αj) ,
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and K = F[α1, . . . , αn]. In other words, you get K from F by adjoining
all the roots of f . Show that the splitting field is countable if the ground
field F is countable. Take into account the possibility that f is reducible
over F, and might even split into linear factors in F.

4. Let fn be a list of all polynomials over F, which means that F[X] =
{fn|n > 0}. Define a tower of fields starting with F0 = F. The tower is
Fn ⊆ Fn+1, with Fn+1 being a splitting field for fn over Fn. Now verify
that

F =
⋃
n≥0

Fn (3)

is an algebraic closure of F, and countable. Here is one possible sequence
of steps, which you may or may not choose to follow:

(a) Show that the union (3) is countable.

(b) Show that the union (3) is a field – closed under field operations.

(c) Show that if α ∈ Fn, for some n, then α is algebraic over F. Hint. A
trick from Thursday’s class may help here.

(d) Suppose g ∈ Fn[X]. Show that g has a root in Fm for some m ≥ n.
Hint. g has a root α in some extension K of Fn (Section 15.2) and
α is algebraic over Fn, so it is algebraic over F, so it is a root of a
polynomial in F[X].

(e) If g ∈ F[X], then g ∈ Fn[X] for some n.
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