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Check the class forum for corrections and hints

Assignment 2

Due Thursday, Feb. 10.

These exercises build on each other. Each one uses results of previous exercises.
Please do them in order. There are no textbook problems this week because
this is enough, and because you will get plenty of practice with the textbook
material when we get to real applications of it.

1. (This exercise uses Greek letters for integers partly to practice using Greek
letters. The material is part of elementary number theory, but presented
here in the spirit of ring theory.). The greatest common divisor of integers
ξ and η is the positive integer γ = gcd(ξ, η) that generates the ideal
generated by ξ and η:

γ = gcd(ξ, η) means that (γ) = (ξ, η) , γ ≥ 1 .

This sequence of steps shows that the slick gcd definition is equivalent to
the definition using common prime factors in ξ and η.

(a) Suppose p is a prime divisor of ξ and η. This is written p|ξ and p|η.
It means that there are (integers) α and β with ξ = αp and η = βp.
Show that p|ζ for all ζ ∈ (ξ, η). Conclude that p|γ.

(b) Suppose that γ = gcd(ξ, η) > 1. Show that there is a prime p with
p|ξ and p|η. Hint. ξ ∈ (γ) and p|γ for some p.

(c) Show that if p|ξ and p|η, then γ/p = gcd(ξ/p, η/p).

(d) Suppose the ξ and η have prime factorizations

ξ =
∏

pµi

i , η =
∏

pνii .

This means that ξ has µ1 copies of p1 in its prime factorization, etc.
Each product has finitely many terms, which means that there are
finitely many i with µi > 0 or νi > 0. Show that γ = gcd(ξ, η) has
prime factorization

γ =
∏

pλi
i , λi = min(µi, νi) .

Hint. Use part (c) to “pull out prime factors” one at a time. Please
take your time with this part. Try to find an argument that is “ef-
ficient”, which means that it is clear and short. Some efficient argu-
ments are clever, compared to “direct” arguments you might think
of at first.
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2. Let R be a ring and ak ∈ R. Show that (a1, · · · , an) = R if and only if
there are xk ∈ R with 1 = x1a1 + · · ·+ xnan. Specialize this to R = Z as
follows. Integers ξ and η are relatively prime if gcd(ξ, η) = 1. Show that if
ξ and η are relatively prime and n is any integer, then there are integers
α and β with n = αξ + βη. This is a version of the Chinese remainder
theorem, but give a proof using this Exercise and Exercise 1. Comment.
Versions of this observation are used often.

3. This exercise defines the Euler φ function. It is interesting for itself (this
exercise) and for the role it plays in the structure of integer multiplication
mod n (next exercise). It is defined for n ∈ Z, n ≥ 1 (positive integers).
It is the number of residues mod n that are relatively prime to n. More
precisely, define the set of relatively prime residues as

Gn = {k with 1 ≤ k ≤ n− 1 and gcd(k, n) = 1} .

Then φ(n) = |Gn| = the number of residues in Gn.

(a) Follow the definitions literally and show that φ(1) = 1.

(b) Let q = pr be a prime power. Identify Gq and find a formula for
φ(pr).

(c) Let d be a positive divisor of n, so that n/d is a positive integer.
Show that there is a 1-1 correspondence between the set of m ∈
{1, · · · , n− 1} with gcd(m,n) = d and elements of Gn/d. Hint. First
see how this works for n = 10 and its divisors 1, 2, 5.

(d) Prove Euler’s φ formula (the sum is over all divisors of n)

n =
∑
d|n

φ(d) .

Hint. Work out n = 10 or n = 20 or n = 12 to see how it happens.

4. Consider the operation of multiplication on residue classes of k ∈ Gn
mod n. Show that these form an abelian group. It’s clearly associative
and abelian, because it’s multiplication mod n. The point is to find a
multiplicative inverse. To find the multiplicative inverse of x ∈ Gn (mod
n), use the fact that (x, n) = 1.

5. There are two abelian groups of order 4, which are the cyclic group C4

(addition mod 4) and the Klein group (terminology from the text), which
is C2 × C2. More precisely, any abelian group of order 4 is isomorphic
either to C4 of the Klein group. These groups are not isomorphic to each
other (no element of the Klein group has order 4). Which one of these
is the group G8 is isomorphic to? Comment. This shows that Gn need
not be a cyclic group. Exercise 7 shows that Gp is cyclic. Note that
|G8| = |G5| = 4 (see Exercise 6 if you’re not sure). The two groups have
the same order (number of elements) but they’re not isomorphic.
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6. Define Fp = Z/(p). This quotient is a ring. Show that it is a field by
showing that Gp consists of the non-zero elements of Fp so each x ∈ Fp
with x 6= 0 (mod p) has a multiplicative inverse.

7. This sequence of steps shows that F∗p ∼= Cp−1 (the cyclic group with p− 1
elements). For each x ∈ Fp, define the order to be

ord(x) = min
{
k with xk = 1

}
.

The (multiplicative) orbit of x is the set of powers

O(x) =
{
xj , j ∈ Z

}
.

(a) Show that ord(x) = |O(x)|.
(b) Show that if ord(x) = k, then O(x) is the set of all y ∈ Fp that satisfy

the equation yk = 1. Comment. This uses the fact that p is prime.
We saw that G8 has three elements of order 2.

(c) Show that if y ∈ O(x) then ord(y)|ord(x). Show that φ(k) is the
number of elements of O(x) with order k. Show that φ(k) is the
number of elements of F∗p of order k. Show that ord(x)|(p− 1) (you
can use a fact about the orders of subgroups of a finite group).

(d) Show that there is at least one x ∈ Fp with ord(x) = p−1. Hint. Use
Euler’s φ formula (part (d) of Exercise 3) to get a contradiction. Be
careful, part (c) does not, by itself, show there are elements of order
d when d|(p− 1). You have to show this.

(e) Show that the multiplicative group O(x) is isomorphic to Ck, where
k = ord(x). Conclude that F∗p ∼= Cp−1.

(f) Use part (e) to prove the little Fermat theorem, xp−1 = 1 (mod p)
for all x 6= 0.

8. An element g ∈ Fp with O(g) = F∗p is a generator, mod p. Show that 2 is
a generator mod 5 but not mod 7. Find a generator mod 7. Every prime
p has many generators, but they’re not easy to identify except by direct
calculation. It’s natural to calculate O(2) as a first guess. If 2(p−1)/2 = −1
(mod p), then 2 is a generator, otherwise not. The proof in Exercise 7
is non-constructive. It proves generators exist without telling you how to
find them.

9. Let p be an odd prime. Show that the equation x2 = −1 (mod p) has a
solution if and only if p = 1 (mod 4). Hint. x = gk for some k. Check
(but don’t hand in) that 22 = −1 mod 5, there is no solution mod 7 (try
all 4 possibilities). Find a solution mod 13 (to hand in).

10. The Legendre symbol is

(
x−
p

)
. It records whether x is a square mod p:

(
x−
p

)
=


1 if x = y2 (mod p) for some y ∈ Z, x 6= 0 (mod p)

0 if x = 0 ( mod p)

−1 otherwise .
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Show that the Legendre symbol is a (multiplicative) character, which
means that, for any integers x and y and prime p,(

x−
p

)(
y−
p

)
=

(
xy−
p

)
.

Before doing the proof, but not to hand in, check that it’s true for p = 7
and maybe p = 11. Hint. The only case that is deep (relies on real

theorems) is when

(
x−
p

)
= −1 and

(
y−
p

)
= −1. Do the other cases first: x

and y both squares, one of x or y equal to 0 mod p, x = u2 xy = v2, x 6= 0
and y 6= 0 (mod p) implies y is a square. For the hard case, what can you
say about k if g is a generator and x = gk and x is not a square?
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