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Check the class forum for corrections and hints

Assignment 11

Due: Thursday, May 5.

1. (Section 16.1 of the Michael Artin book is about elementary symmetric
polynomials. This exercise gives a different approach to some of that ma-
terial suggested by the book of Emil Artin. You may find this approach
confusing at first because polynomials over rational function fields take
time to get used to.) Let F be a field and let K be the rational function
fields in three variables over F:

K = F(X,Y, Z) .

Define a polynomial f ∈ K[T ] by

f(T ) = (T −X)(T − Y )(T − Z) . (1)

This formula gives a polynomial in T because X, Y , and Z are elements
of K. This can cause (has caused!) confusion, particularly in part (b).

(a) Define A1, A2, A3 ∈ K by

f(T ) = T 3 −A1T
2 +A2T −A3 . (2)

The A1, A2, and A3 are elements of F[X,Y, Z] (i.e., polynomials).
Find formulas for them. (They are the elementary symmetric poly-
nomials in the variables X, Y , and Z.)

(b) Define the intermediate fields L ⊂M ⊂ K by

L = F(A1, A2, A3) , M = L[X] .

Show that:

• [M : L] = 3 Hint. (2) does not split in K.

• K = M[Y ]

• [K : M] = 2

(c) The permutation group S3 acts on K by permuting the variables
X,Y, Z. The fixed field of this action is the set of rational func-
tions r(X,Y, Z) that are invariant under permutation of variables
(i.e., r(X,Y, Z) = r(Z,X, Y ) = r(Y,X,Z), etc.). The field-theoretic
notation for the fixed field is KS3 . Show that L ⊆ KS3 .
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(d) We will prove next week that for any field extension K over F,

|Gal(K/F)| ≤ [K : F] .

Assuming this and using the notation of part (c), show that

[K : KS3 ] ≥ 6 .

Combine this with part (b) to show that L = KS3 . (This is the basic
fact of Michael Artin’s Section 16.1: any symmetric function is a
function of the elementary symmetric functions. Emil Artin does the
theorem for rational functions while Michael Artin does it in a longer
but more elementary way just for polynomials. Both of them do it
for n ≥ 3 variables, which is more or less the same as the argument
here, but with more notation.)

2. (Making the formal derivative look more like calculus) Take a polynomial
over a field, f ∈ F[X] and define a new polynomial u ∈ F[X,h] (the ring
of polynomials in two variables) by u(X,h) = f(X + h).

(a) Show that there are polynomials f ′ ∈ F[X] and r ∈ F[X,h] so that

f(X + h) = f(X) + hf ′(X) + h2r(X,h) . (3)

(The last term on the right is a version of O(h2).) The formula (3)
defines a map D : F[X]→ F[X] by Df = f ′.

(b) Show that D is a linear map on F[X] as a vector space over F, and
a homomorphism of F[X] as an additive group, but is not a ring
homomorphism.

(c) Use (3) to show that (fg)′ = f ′g + fg′ in F[X]. (An additive group
homomorphism on a ring is called a derivation if it satisfies D(fg) =
(Df)g + f(Dg). Formal differentiation is a derivation.)

(d) Identify ker(D). The answer depends on whether char(F) = 0 or
char(F) = p > 1. (This is a restatement of an exercise from Assign-
ment 10.)

(e) (Do this only if you’re interested. It’s not important for the class.)
Show that if c ∈ F (a polynomial of degree zero) and D is a derivation
on F[X] thenDc = 0. Show that ifD is any derivation F[X] satisfying
deg(Df) < deg(f), then Df = cf ′, for some c ∈ F. Is this true
without the hypothesis deg(Df) < deg(f)?

3. (We described the splitting field of X3 − 2 in class. Here’s an example
where (hint) the same ideas apply but the general structure is more clear.)
Let K/Q be a splitting field of X5 − 2 with K ⊂ C. Give an analysis of
K/Q that explains the following:

• K = Q[ρ, ζ5], where ρ ∈ R has ρ5 = 2 and ζ5 = e2πi/5.
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• Let G be the group of field automorphisms of K that fix Q (i.e., the
Galois group GalQ(K). Any g ∈ G is uniquely specified by integers k
and n so that g(ρ) = ζk5 ρ and g(ζ5) = ζn5 .

• Define special elements σ : (ρ  ζ5ρ, ζ5  ζ5) and τ : (ρ  ρ,
ζ5  ζ25 ). These satisfy σ5 = id, τ4 = id (more precisely, σ has order
5 and τ has order 4) and the commutator relation τστ−1 = σ2. This
is a “generators and relations” description of G.

• Every g ∈ G may be represented as g = σkτn, where k and n are
uniquely defined mod 5 and mod 4 respectively. Warning. G is not
a product group, not abelian, and (σjτm)(σkτn) 6= σj+kτm+n.

• |G| = [K : Q]. (This is a general theorem, but please verify it
explicitly by determining the order of G and the degree of K/Q)

4. A group G is a reflection group if every g ∈ G has g2 = id (every element
has order two). Let K ⊂ C be a finite degree extension of Q so that
GalQ(K) is not a reflection group. Show that K contains at least one non-
trivial root of unity e2πi/n with n > 2. Hint. Let {γj} be a basis of K
over Q. Let M be the matrix with rational coefficients that represents the
action of g in the {γj} basis. Why are there elements of K corresponding
to eigenvalues and eigenvectors of M?
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