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Basic definitions and concepts of commutative algebra.

It came up in the first class that the Algebra I class did not cover rings very
much or at all. These notes give the basic definitions. Please think through
anything that is unfamiliar to you. This may take a while. All this material is
in each of the three textbooks (Artin, Judson, Herstein). It might help to see
the concepts described more systematically in those books.

Some domains

I use the word domain to mean any algebraic object, or algebraic setting. The
technical term is category. There is a category of groups, a category of rings,
etc. A mathematician might say: “this theorem holds is the category of rings”
to mean that it is true about any ring. We won’t use category theory in this
class, but the word might slip out once or twice.

integers Z = {· · · ,−2,−1, 0, 1, · · · }

rationals Q = fractions r = a
b where a and b are integers.

reals R = the set of real numbers

complex numbers C = the set of complex numbers z = x + iy with x ∈ R
and y ∈ R.

polynomials D[x] = the set of formal polynomials with coefficients in the
“domain” D. A polynomial f ∈ D[x] is an expression a0+a1x+· · ·+anxn.
The ak are elements of D. The powers xk are just formal expressions that
help us define the operations on polynomials.

Operation

The “domains” of abstract algebra are groups, rings, fields, algebras, etc. Each
type of domain is defined by the operations that are defined on it. If D is a
domain, an operation is a function F : D×D 7→ D. This means that for any pair
(x, y) with x ∈ D and y ∈ D, there is z = F (x, y) ∈ D. An operation is usually
written “as an operation”, z = x ◦ y means that z = F (x, y). The operations in
this course are called addition, where ◦ is + or multiplication, where ◦ is · or ×
or just left out. An operation is assumed to be associative, which means that
any x, y, z ∈ D have

(x ◦ y) ◦ z = x ◦ (y ◦ z) .

In function notation, this is

F (F (x, y), z) = F (x, F (y, z)) .
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The expression using F shows that the associative property is non-trivial. It also
demonstrates that it can be more clear to use operator notation. An operation
is commutative (also called abelian) if F (x, y) = F (y, x) (which is the same as
x ◦ y = y ◦ x) for all x, y ∈ D.

Inverse

The identity element for operation ◦ is e ∈ D with e◦x = x and x◦ e = x for all
x ∈ D. If ◦ is addition, the identity is called the additive identity and is often
denoted by 0. That means 0 + x = x+ 0 = 0 for all x ∈ D. The multiplicative
identity is often denoted by 1, and 1 · x = x · 1 = x for all x ∈ D. An inverse
of x ∈ D for operation ◦ is y ∈ D with x ◦ y = y ◦ x = e. An additive inverse
of x ∈ D is often denoted by −x, so x+ (−x) = (−x) + x = 0. A multiplicative
inverse of x is denoted by x−1, so

(
x−1

)
· x = x ·

(
x−1

)
= 1. These notations

assume that an inverse is unique, which it usually is.

Group

A group G is a domain with a single operation. It is assumed that there is
an identity element and every x ∈ G has a unique inverse with respect to the
operation. In this class, some groups are commutative and others (particularly
Galois groups) need not be. The group operation is usually written multiplica-
tively, and generally without the ·. That means x ◦ y is written xy. If the group
is abelian, the operation is sometimes written additively, so x ◦ y is written as
x+y. All of the example domains above are groups if the operation is addition.
The domain Q∗ is Q with 0 removed (non-zero rational numbers). This Q∗,
with the operation of multiplication, is also a group. The multiplicative groups
R∗ and C∗ are defined in the same way. You have seem other groups where the
operation is neither addition nor multiplication, such as Sn (the group of per-
mutations of n objects) and the group of rotations and translations of euclidean
space.

Semi-group

A semi-group is a domain with an operation that has an identity element but
not necessarily inverses. Any group is a semi-group. Some semi-groups that are
not groups are Z and D[x].

Ring

A ring R is a domain with two operations, one written additively and one writ-
ten multiplicatively. The ring is a group with respect to the additive operation
and a semi-group with respect to “multiplication” (the operation written mul-
tiplicatively). In this class, the operations in a ring are always assumed to be
commutative. In commutative algebra, all operations are assumed to be commu-
tative except group operations. (Galois theory is part of commutative algebra.)
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The operations are related by the distributive law, which is

x · (y + z) = (x · y) + (x · z) .

All the domains above are rings, except possibly D[x]. This becomes a ring if
the coefficients ak are in an abelian semi-group (or a ring). A zero divisor in
a ring is an x 6= 0 so that there is a y 6= 0 with xy = 0. A ring without zero
divisors is an integral domain, sometimes just called domain.

Field

A field F, is a ring where every x ∈ F except x = 0 has a multiplicative inverse.
Examples are Q, R and C. The integers and polynomial rings are not fields
because many elements do not have multiplicative inverses. Polynomial rings
are unlikely to be fields. The degree of a polynomial is the largest n with an 6= 0
(assuming D is a ring). We write n = deg(f). If deg(f) > 0, and if the coefficient
ring (where the coefficients aj live) has no zero divisors, then there is no g with
fg = 1.

Homomorphism (mapping)

A homomorphism is a map φ : D 7→ E from one domain to another domain that
respects the operations of the domains. This means that whatever operations
exist in D also exist in E and φ(x ◦D y) = φ(x) ◦E φ(y) for all x, y ∈ D. The
notation ◦D means the operation in D. For groups, a homomorphism has to
respect the group operation. For rings and fields, it has to respect both addition
and multiplication. An example is what the textbook calls the polynomial
evaluation map. If R is a ring and D = R[x] (the polynomial ring), and for
c ∈ R, there is a map that evaluates a polynomial f(x) at the point c

φc : R[x] 7→ R , f
φc f(c) = a0 + a1c+ a2c

2 + · · ·+ anc
n .

A homomorphism is an injection, (also called into if no to elements are
mapped to the same element (no loss of information). That is x 6= y =⇒
φ(x) 6= φ(y). A homomorphism is a surjection (also called onto, “sur” is “on”
in French) if it covers all of its target (also called range). For every y ∈ E, there
is an x ∈ D with φ(x) = y. A homomorphism is a bijection if it is both into
and onto. In algebra, a bijection is necessarily an isomorphism, which means
that the inverse map defined by φ−1(y) = x if φ(x) = y is well defined and
also is a homomorphism. You should verify this for yourself: φ−1 preserves the
operations.

Two domains (two groups, or two rings, etc.) are isomorphic if there is
an isomorphism between them. People think of isomorphic objects as being
the same, but that doesn’t mean that isomorphisms are obvious or trivial. An
automorphism is an isomorphism from a domain to itself. There can be many
automorphisms that are not the identity automorphism. Galois theory as about
certain kings of automorphisms of fields.
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The image of a homomorphism is the set of φ(x) for all x. The kernel of a
group homomorphism is the set of x ∈ G with φ(x) = id. (The identity element
in a group is often called id). The kernel of a ring or field homomorphism is the
set of x ∈ R or x ∈ F that map to the additive identity: φ(x) = 0.

Polynomials and rational functions

A polynomial ring can have more than one “variable”. For example, Q[x, y] is
the set of polynomials in two variables with rational coefficients. Elements of
Q[x, y] have the form

f =

n∑
i=0

m∑
j=0

aijx
iyj .

You add and multiply multi-variable polynomials in the usual way. A rational
function is a quotient of polynomials. The set of rational functions in one
variable with coefficients in F is written F(x). Round parentheses mean rational
functions and square braces mean polynomials. A rational function r ∈ F(x)
has the form

r(x) =
f(x)

g(x)
, f, g ∈ F[x] , g 6= 0 .

The denominator is not allowed to be the zero polynomial, but it may have
zeros. The zeros of a polynomial or rational function are elements a ∈ F with
f(a) = 0 or r(a) = 0. A pole of a rational function is an a ∈ F so that g(a) = 0
and f(x) 6= 0. If f(a) = 0 and g(a) = 0, then you simplify f and g by dividing
out the common factor (x− a).

Ideal

An ideal is a subset of a ring, I ⊂ R. An ideal is an additive subgroup of R: if
x ∈ I and y ∈ I, then x+ y ∈ I. An ideal is closed under multiplication by any
element of R. If a ∈ R and x ∈ I, then ax ∈ I. For any a ∈ R, there is the
principal ideal, written (a), that consists of all multiples of a by elements of R:

(a) = {ax | x ∈ R} .

A principal ideal domain is a ring in which every ideal is a principal ideal. Some
of the most basic rings, such as Z and F[x] (a polynomial ring over a field) are
principal ideal domains. Fancier rings may not be.

It is possible that S ⊂ R is a sub-ring but not an ideal. A sub-ring is a set
that is a subgroup under addition and a sub-semigroup under multiplication.
That means that if x ∈ S and y ∈ S, then xy and x+y and −x are in S. It does
not require that ax ∈ S if a /∈ S. For example, Z ⊂ Z[x] is a sub-ring but not an
ideal. The product of two integers is an integer, but the product of an integer
x ∈ S = Z with a polynomial a ∈ R = Z[x] is not an integer if deg(a) > 0.
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Quotient ring

The quotient of a ring R by an ideal I is written R/I. It is something like a
quotient group under the operation of addition, but that is not the whole story
because R/I is a ring with addition and multiplication, not just a group with
addition. If I ⊂ R is an ideal and a ⊂ R is an element, then the coset of a is

a = {a+ x | x ∈ I} .

You “remember” (look it up if you don’t remember) from group theory that
cosets a and b either are disjoint or are identical. If c ∈ a and x ∈ b, then
c = a = b. You also know that if c = a + b then c = a+ b. That implies
that the + operation can be defined on cosets as a+ b = a+ b and this is well
defined. That would be true if I were only an additive subgroup. If I is an
ideal and c = ab, then c = ab. Threfore a · b = ab can define multiplication of
multiplication of cosets. This makes the set of cosets into a ring, which is the
quotient R/I.

You should check these claims to see how the verifications work. You might
want to warm up with the special case where R = Z and I = (n). In this case
a′ ∈ a is the same as a ≡ a′ mod n. (Check that you believe this.) You need to
check that if a ≡ a′ mod n and b ≡ b′ mod n then a + b ≡ a′ + b′ mod n and
ab = a′b′ mod n.

Exercises

These exercises are “routine verifications” that illustrate how the definitions
work. That doesn’t mean you can easily “get” all of them. Please ask for hints
if you get stuck, and/or look in a textbook. You should also make sure you can
verify the many claims above.

1. Suppose R
φ7→ S is a ring homomorphism. Show that I = ker(φ) is an

ideal in R.

2. Suppose R = C[x] and λ ∈ C with λ 6= 0. Consider the scaling map
fλ(x) = f(λx). Show that this defines an automorphism of C[x]. Call this
automorphism Sλ : C[x] 7→ C[x]. Consider the translation map fa(x) =
f(x+ a). Show that this is an automorphism and call it Ta.

3. The set of automorphisms of a domain is called aut(D). Show that this is a
group “under composition”. That means that if φ : D 7→ D and ψ : D 7→ D
are two automorphisms of D, then φψ is another automorphism defined
by (φψ)(x) = φ(ψ(x)).

(a) Show that SλSµ = Sλµ.

(b) Show that TaTb = Ta+b.

(c) Show that the composition operation in aut(D) is associative, find
the identity of this group, and show that every element has an inverse.
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(d) Show that an automorphism group does not have to be abelian ever
if the underlying domain is abelian. Specifically, show that SλTa 6=
TaSλ.

4. A proper ideal is I ⊂ R with I 6= R. Show that (0) is the only proper
ideal of a field.

5. LetR = F[x] be the one variable polynomial ring and I = {f ∈ R | f(0) = 0}.

(a) Show that I is the principal ideal generated by the polynomial x ∈
F[x].

(b) Show that R/I is isomorphic to F. Hint: For f ∈ F[x], define φf =
f(0) (an evaluation map). Show that if f ′ ∈ f , then φ(f ′) = φ(f).
This implies that the number φ(f) is well defined. That makes φ a
map from R/ to F. Show that this φ is a homomorphism, that it is
into and onto.

6. Let R = R[x, y] be the ring of polynomials in x and y with real coefficients.
Let I ⊂ R be the set of polynomials that vanish at the origin, which is
f(0, 0) = 0. Show that I is not a principal ideal. Hint. If I = (f) (a
principal ideal generated by the polynomial f), then x = u(x, y)f(x, y) for
some polynomial u(x, y) and y = v(x, y)f(x, y) for some other polynomial
v(x, y). Let f(x, y) = f00 + f10x + f01y + f20x

2 + · · · , and similarly for
u and v. The x equation is x = u00f00 + (u10f00 + u00f01)x + · · · . This
implies that u00 = 0 or f00 = 0 or both. If u00 = 0 then u10f00 = 1, so
f00 6= 0. If f00 = 0, then u00f10 = 0, so f10 6= 0. Keep going like this until
you find a contradiction.

Corrections

• January 31, exercise 2 corrected to replace S[x] by C[x].
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