Honors Algebra II, Courant Institute, Spring 2021
http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2021/HonorsAlgebraII.html
Check the class forum for corrections and hints

Assignment 10, due April 27 (before class starts).

Corrections

- April 22 Exercises from the textbook changed.

Assigned Exercises, to hand in

1. Here is a more direct proof of Proposition 16.11.2. Suppose $\mathbb{F} \subset \mathbb{C}$ and $\zeta=e^{2 \pi i / p} \in \mathbb{F}$. For any $a \in \mathbb{F}$ with $a \neq 0$, consider the polynomial $f \in \mathbb{F}[t]$ given by $f(t)=t^{p}-a$.
(a) Suppose $\alpha \in \mathbb{C}$ satisfies $\alpha^{p}=a$ (the fundamental theorem of algebra says there is such an α). Show the following formula holds in $\mathbb{F}[\alpha]$:

$$
f(t)=\prod_{k=0}^{p-1}\left(t-\zeta^{k} \alpha\right)
$$

Hint. Show that $f(\zeta t)=f(t)$. If $g(t)$ is the product on the right side, show that $g(\zeta t)=g(t)$. Use this figure out the coefficients $g(t)=t^{p}+c_{p-1} t^{p-1}+\cdots+c_{0}$.
(b) Show that if f has a root in \mathbb{F} then f splits in \mathbb{F}.
(c) Show that if f has no root in \mathbb{F}, then f is irreducible in \mathbb{F} and $\mathbb{F}[\alpha]$ is the splitting field of f. Do this by showing directly that $\alpha \rightarrow \omega \alpha$ generates an automorphism of $\mathbb{F}[\alpha]$ over \mathbb{F}, if $\omega^{p}=1$. Consider two general elements of $\mathbb{F}[\alpha]$,

$$
x=\sum_{j=0}^{p-1} \xi_{j} \alpha^{j}, \quad y=\sum_{k=0}^{p-1} \eta_{k} \alpha^{k}
$$

Find expressions for $\sigma(x)$ and $\sigma(y)$ if $\sigma(\alpha)=\omega \alpha$ and verify by direct calculation that $\sigma(x y)=\sigma(x) \sigma(y)$. Explain how this shows the Galois group $G(\mathbb{F}[\alpha] / \mathbb{F})$ is transitive on the roots $\zeta^{k} \alpha$ and how this implies that f is irreducible.
2. This exercise explores the Galois group of the polynomial $f(t)=t^{p}-a$ over \mathbb{Q}. It reviews the basic aspects of Galois theory by verifying them in a specific example. [Take care in your writeup that τ, the Greek letter "tau", does not look like t or r.] Take $p>2$ to be prime and $a \in \mathbb{Q}$ that does not have a rational $p^{\text {th }}$ root. The relevant fields are the ground field \mathbb{Q}, the cyclotomic extension $\mathbb{F}=\mathbb{Q}[\zeta]$ (with $\zeta=e^{2 \pi i / p} \in \mathbb{C}$), $\mathbb{L}=\mathbb{Q}[\alpha]$, where $\alpha \in \mathbb{C}$ satisfies $\alpha^{p}=a$, and \mathbb{K}, which is the splitting field of f. Take
r to be a generator of \mathbb{F}_{p}^{*} and $s=r^{-1}$ in \mathbb{F}_{p}. You may "abuse notation" by considering r and s to be integers with $r s \equiv 1$ and $r^{p-1}=1 \bmod p$, etc. Any $x \in \mathbb{K}=\mathbb{Q}[\zeta, \alpha]$ may be written as

$$
\begin{equation*}
x=\sum_{i=0}^{p-2} \sum_{j=0}^{p-1} \xi_{i j} \zeta^{i} \alpha^{j}, \text { simplified to } x=\sum \xi_{i j} \zeta^{i} \alpha^{j} . \tag{1}
\end{equation*}
$$

The Galois group $G=\operatorname{Gal}(\mathbb{K} / \mathbb{Q})$ is generated by elements $\sigma: \alpha \rightarrow \zeta \alpha$ and $\tau: \zeta \rightarrow \zeta^{r}$. More explicitly, these are given by

$$
\begin{array}{r}
\sigma(x)=\sum \xi_{i j} \zeta^{i}(\zeta \alpha)^{j}=\sum \xi_{i j} \zeta^{i+j} \alpha^{j} \\
\tau(x)=\sum \xi_{i j}\left(\zeta^{i}\right)^{r} \alpha^{j}=\sum \xi_{i j} \zeta^{i r} \alpha^{j}
\end{array}
$$

(a) Show that \mathbb{K} consists of elements of the form (䒰). Show that the collection of all elements of the form ($(\hat{\mathrm{I}})$, with rational coefficients $\xi_{i j}$, form the splitting field of f. Use ($(\hat{\mathbb{I}})$ to determine $[\mathbb{K}: \mathbb{Q}]$.
(b) What is the fixed field of $\langle\tau\rangle \subset G(\mathbb{F}$ or $\mathbb{L})$? Here, $\langle\tau\rangle$ is the subgroup generated by τ. Is it supposed to be true (why or why not) and is it true that

$$
|\langle\tau\rangle|\left[\mathbb{K}^{\langle\tau\rangle}: \mathbb{Q}\right]=[\mathbb{K}: \mathbb{Q}] ?
$$

(c) How many roots does f have in $\mathbb{K}^{\langle\tau\rangle}$? Use the answer to determine whether $\langle\tau\rangle \subset G$ is a normal subgroup.
(d) Identify the fixed field $\mathbb{K}^{\langle\sigma\rangle}$.
(e) Show that $\langle\sigma\rangle \subset G$ is normal by finding an irreducible $g \in \mathbb{Q}[t]$ that splits in $\mathbb{K}^{\langle\sigma\rangle}$.
(f) Verify that $\langle\sigma\rangle \subset G$ is normal by calculating the action of τ on σ. Since $\tau \sigma \tau^{-1} \in\langle\sigma\rangle$, this means finding m so that $\tau \sigma \tau^{-1}=\sigma^{m}$. Hint. τ^{-1} involves $\zeta \rightarrow \zeta^{s}$ (why?).
(g) Since $H=\langle\tau\rangle$ is not normal, there are conjugate subgroups $\widetilde{H}=$ $g H^{-1} \neq H$ for various $g \in G$. The Galois correspondence theorem implies that the fixed fields $\mathbb{K}^{\widetilde{H}}$ are also distinct. Find a one to one correspondence between these fixed fields and the roots of f in \mathbb{K}.
3. Exercise 7.2 Chapter 16.
4. Exercise 7.6 Chapter 16.
5. Exercise 8.3 Chapter 16.
6. Exercise 10.2 Chapter 16.
7. Exercise 12.2 Chapter 16.

