Honors Algebra II, Courant Institute, Spring 2021

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2021/HonorsAlgebraII.html Check the class forum for corrections and hints

Assignment 10, due April 27 (before class starts).

Corrections

• April 22 Exercises from the textbook changed.

Assigned Exercises, to hand in

- 1. Here is a more direct proof of Proposition 16.11.2. Suppose $\mathbb{F} \subset \mathbb{C}$ and $\zeta = e^{2\pi i/p} \in \mathbb{F}$. For any $a \in \mathbb{F}$ with $a \neq 0$, consider the polynomial $f \in \mathbb{F}[t]$ given by $f(t) = t^p a$.
 - (a) Suppose $\alpha \in \mathbb{C}$ satisfies $\alpha^p = a$ (the fundamental theorem of algebra says there is such an α). Show the following formula holds in $\mathbb{F}[\alpha]$:

$$f(t) = \prod_{k=0}^{p-1} (t - \zeta^k \alpha)$$

Hint. Show that $f(\zeta t) = f(t)$. If g(t) is the product on the right side, show that $g(\zeta t) = g(t)$. Use this figure out the coefficients $g(t) = t^p + c_{p-1}t^{p-1} + \cdots + c_0$.

- (b) Show that if f has a root in \mathbb{F} then f splits in \mathbb{F} .
- (c) Show that if f has no root in \mathbb{F} , then f is irreducible in \mathbb{F} and $\mathbb{F}[\alpha]$ is the splitting field of f. Do this by showing directly that $\alpha \to \omega \alpha$ generates an automorphism of $\mathbb{F}[\alpha]$ over \mathbb{F} , if $\omega^p = 1$. Consider two general elements of $\mathbb{F}[\alpha]$,

$$x = \sum_{j=0}^{p-1} \xi_j \alpha^j , \ y = \sum_{k=0}^{p-1} \eta_k \alpha^k$$

Find expressions for $\sigma(x)$ and $\sigma(y)$ if $\sigma(\alpha) = \omega \alpha$ and verify by direct calculation that $\sigma(xy) = \sigma(x)\sigma(y)$. Explain how this shows the Galois group $G(\mathbb{F}[\alpha]/\mathbb{F})$ is transitive on the roots $\zeta^k \alpha$ and how this implies that f is irreducible.

2. This exercise explores the Galois group of the polynomial $f(t) = t^p - a$ over \mathbb{Q} . It reviews the basic aspects of Galois theory by verifying them in a specific example. [Take care in your writeup that τ , the Greek letter "tau", does not look like t or r.] Take p > 2 to be prime and $a \in \mathbb{Q}$ that does not have a rational p^{th} root. The relevant fields are the ground field \mathbb{Q} , the cyclotomic extension $\mathbb{F} = \mathbb{Q}[\zeta]$ (with $\zeta = e^{2\pi i/p} \in \mathbb{C}$), $\mathbb{L} = \mathbb{Q}[\alpha]$, where $\alpha \in \mathbb{C}$ satisfies $\alpha^p = a$, and \mathbb{K} , which is the splitting field of f. Take r to be a generator of \mathbb{F}_p^* and $s = r^{-1}$ in \mathbb{F}_p . You may "abuse notation" by considering r and s to be integers with $rs \equiv 1$ and $r^{p-1} = 1 \mod p$, etc. Any $x \in \mathbb{K} = \mathbb{Q}[\zeta, \alpha]$ may be written as

$$x = \sum_{i=0}^{p-2} \sum_{j=0}^{p-1} \xi_{ij} \zeta^i \alpha^j , \text{ simplified to } x = \sum \xi_{ij} \zeta^i \alpha^j . \tag{1}$$

The Galois group $G = Gal(\mathbb{K}/\mathbb{Q})$ is generated by elements $\sigma : \alpha \to \zeta \alpha$ and $\tau : \zeta \to \zeta^r$. More explicitly, these are given by

$$\sigma(x) = \sum \xi_{ij} \zeta^i (\zeta \alpha)^j = \sum \xi_{ij} \zeta^{i+j} \alpha^j$$

$$\tau(x) = \sum \xi_{ij} (\zeta^i)^r \alpha^j = \sum \xi_{ij} \zeta^{ir} \alpha^j$$

- (a) Show that \mathbb{K} consists of elements of the form $(\stackrel{\mathbb{K}}{\mathbb{I}})$. Show that the collection of all elements of the form $(\stackrel{\mathbb{K}}{\mathbb{I}})$, with rational coefficients ξ_{ij} , form the splitting field of f. Use $(\stackrel{\mathbb{K}}{\mathbb{I}})$ to determine $[\mathbb{K} : \mathbb{Q}]$.
- (b) What is the fixed field of $\langle \tau \rangle \subset G$ (F or L)? Here, $\langle \tau \rangle$ is the subgroup generated by τ . Is it supposed to be true (why or why not) and is it true that

$$|\langle \tau \rangle| [\mathbb{K}^{\langle \tau \rangle} : \mathbb{Q}] = [\mathbb{K} : \mathbb{Q}] ?$$

- (c) How many roots does f have in $\mathbb{K}^{\langle \tau \rangle}$? Use the answer to determine whether $\langle \tau \rangle \subset G$ is a normal subgroup.
- (d) Identify the fixed field $\mathbb{K}^{\langle \sigma \rangle}$.
- (e) Show that $\langle \sigma \rangle \subset G$ is normal by finding an irreducible $g \in \mathbb{Q}[t]$ that splits in $\mathbb{K}^{\langle \sigma \rangle}$.
- (f) Verify that $\langle \sigma \rangle \subset G$ is normal by calculating the *action* of τ on σ . Since $\tau \sigma \tau^{-1} \in \langle \sigma \rangle$, this means finding *m* so that $\tau \sigma \tau^{-1} = \sigma^m$. *Hint*. τ^{-1} involves $\zeta \to \zeta^s$ (why?).
- (g) Since $H = \langle \tau \rangle$ is not normal, there are conjugate subgroups $\tilde{H} = gHg^{-1} \neq H$ for various $g \in G$. The Galois correspondence theorem implies that the fixed fields $\mathbb{K}^{\tilde{H}}$ are also distinct. Find a one to one correspondence between these fixed fields and the roots of f in \mathbb{K} .
- 3. Exercise 7.2 Chapter 16.
- 4. Exercise 7.6 Chapter 16.
- 5. Exercise 8.3 Chapter 16.
- 6. Exercise 10.2 Chapter 16.
- 7. Exercise 12.2 Chapter 16.