
Honors Algebra II, Courant Institute, Spring 2021

http://www.math.nyu.edu/faculty/goodman/teaching/HonorsAlgebraII2021/HonorsAlgebraII.html

Check the class forum for corrections and hints

Assignment 1, due February 9 (before class starts).

Corrections

• January 29: Exercise 1, the multiplication formula is corrected. The old
one was garbled.

• February 1: Exercise 2, clarified the relation between n and 12.

• February 1: Exercise 3, clarified the notation, particularly φ(n).

• February 1: Exercise 4, reworded to make it clear that the hypothesis
involves all x ∈ Fp.

• February 1: Exercise 6, typo fixed F[x] −→ F(x) in one place.

• February 1: Unassigned Exercise 1, typo fixed: Fp −→ F∗p.

• February 8: Exercise 6, corrected.

Instructions

• Do not hand in a rough draft. Copy or type answers neatly and clearly.
Points may be deducted for writing that is sloppy, has excessive cross-outs,
or is hard to read.

• State facts precisely in clear language or notation. Put assertions in logical
order. State clearly what the hypotheses and conclusions. Put the steps
of an argument in logical order, including definitions. Points may be
deducted for an incorrectly stated argument even if you seen to understand
it. Clear mathematical exposition is an important goal for the class.

• Learn the Greek letters used in math. Learn their mathematical names
and write them clearly.

Review of Fp. There is no recitation on Friday January 29 as I had thought
and planned. Instead of going to recitation, please spend those 75 minutes on
the following “review” of Fp ∼= Z/(p). You need be aware of these facts to do
some exercises in this assignment. Everything here is in the textbook (or any
other appropriate abstract algebra book), but maybe not collected in one place.

If p is a prime number, then the quotient ring Z/(p) is a field. If x ∈ Z and
x 6= 0 mod p, then there is y ∈ Z with xy = 1 mod p. Every non-zero element
of the quotient ring has a multiplicative inverse, which makes the quotient ring
a field. This field, which has p elements, is denoted Fp. The multiplicative
group F∗p consists of the p−1 non-zero elements of Fp with multiplication as the
group operation. The structure theorem for F∗p is the little Fermat theorem. This
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states that F∗p is cyclic (definition and proof outline below). A cyclic group has

a generator (not unique) g so that as a set, F∗p is
{
g, g2, · · · , gp−1 = 1

}
. This is

a way of saying that the powers of g fill out Fp∗. For any x ∈ F∗p there is a power

k so that gk = x. As a consequence, any x ∈ F∗p satisfies xp−1 = 1, because

xp−1 =
(
gk
)p−1

=
(
gp−1

)k
= 1k = 1 .

You can multiply this by x to get the equivalent statement xp = x if x 6= 0 in
Fp.

Pierre de Fermat died in 1665, centuries before abstract algebra and finite
fields. He stated his theorem in terms of powers of numbers mod p. For any p
there generator g so that if x is not a multiple of p then x ≡ gk mod p. This
generator has the property that gp−1 ≡ 1 mod p. Therefore (as above) xp ≡ x
mod p. This applies to any x ∈ Z as long as x is not a multiple of p. Note the
difference in notation. For x ∈ Fp we write xp = x, which is true in the finite
field. For x ∈ Z, we write x ≡ xp mod p, because the two integers x and xp are
not the same integer.

Fermat’s little theorem has an interesting modern application. Large primes
are the basis of the RSA public key cryptography system which is used in all
internet credit card transactions. You can find a large prime by choosing a large
integer at random and testing whether it’s prime. If you take a random number
with d digits (say, d = 100), the probability that it is prime is O(d−1), by the
prime number theorem. This is not so small. To find a 100 digit prime, you
have to test on the order of 100 numbers. The Miller Rabin test is a way to test
whether an integer n is prime. The algorithm is a “randomized algorithm” that
does a sequence of independent tests using different randomly chosen numbers
x ∈ Z, with 1 < x < n. If n is not prime, there is a 75% chance (at least) that
x will be a witness. If you try 50 times, and n is not prime, there the chance
that none of the x values you chose were witnesses is less than 2−100 ≈ 10−30.
This is not impossible in the mathematical sense, but it is impossible in the
practical sense. A surprising feature of this is that you can tell that n is not
prime without finding a factor of n.

The test starts with a “little Fermat” test. You check whether xn = x mod
n. If not, then x is a witness to the fact that n is not prime. The full Miller
Rabin test does some more checks with the same x using the structure that Fn
would have if n were prime. If these tests fail, then x is a witness. The test does
not produce a factor of n. The class web page has a link to Rabin’s original
paper with this amazing algorithm and theorem.

The RSA public key cryptography system is based on the fact that if you
know K = pq with p and q prime, then it is impractical to learn p or q. If p and
q have d digits and K has 2d digits, the best known factoring algorithm requires
O(eCd) work to find p and q. If “Bob” wants to receive a secure message from
“Alice” (these names are used to describe any encryption/decryption scheme),
Bob generates p and q by generating d digit numbers at random and using the
Miller Rabin test to find primes. The Bob tells Alice K, keeping p and q secure.
Anyone who “hears” Bob’s message to Alice can learn K, but they can’t learn p
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or q. Alice uses K to encrypt her message. But nobody can decrypt the message
without knowing p and q. Anyone can “hear” the message from Alice to Bob,
but only Bob can decrypt it.

I don’t know how Fermat proved the little theorem, but today it may be
seen as a consequence of the structure theorem for finite abelian groups. You
may not “remember” (have seen) all of the proofs. These facts are just stated
here for your information. You are invited to write out the easy proofs, but
please do not hand them in. They are not part of the assignment.

1. The cyclic group Cn with n is the quotient of the additive group Z by the
subgroup (all subgroups of abelian groups are normal) nZ = {nk | k ∈ Z}.

2. For x ∈ Cn we use the notation kx = x + · · · + x (k times). We use
multiplicative notation, but multiplication is not part of the group Cn.
For any k the number m = # {x ∈ Cn | kx = 0} (the number of elements
with ...) is given by m = gcd(k, n). For example, in C10 there are five
elements with 15x = 0, namely x = 0, 2, 4, 6, 8.

3. In particular, if k|n (k divides n), then k = # {x ∈ Cn | kx = 0}. For
example, x = 0, 2, 4, 6, 8 are the elements of C10 with 5x = 0.

4. If gcd(n,m) = 1 (they are relatively prime), then Cn × Cm ∼= Cnm (the
product group on the left is isomorphic to the cyclic group on the right).

5. If gcd(m,n) > 1 (not relatively prime), then Cn × Cm is not isomorphic
to Cnm. In fact, if k|n and k|m, then # {x ∈ Cn × Cm | kx = 0} = k2.
These are x = (y, z) ∈ Cn × Cm with my = 0 in Cn and mz = 0 in Cm.

6. (Structure theorem for finite abelian groups) If G is a finite abelian group,
then G is isomorphic to a finite product of cyclic groups: G ∼= Cn1

× · · ·×
Cnr

. [This is proved in the Modules chapter in the textbook. The proof
is not hard, but we probably won’t get to it this semester.]

7. If the number of factors is r ≥ 2, we may assume that no pair of sizes nj
and ni are relatively prime, because of part (4). In particular, if r > 1,
there is a k > 1 with k|n1 and k|n2.

8. If F∗p is not cyclic, then it has a cycle decomposition, by part (6), with
r > 1. Then there is a k as in part (7). Part (5) then implies that there
are at least k2 > k elements x ∈ F∗p with xk = 1. This is the main step
in the proof of the little Fermat structure theorem. It may be confusing
because the group operation here is multiplication in F∗p, but we wrote the
operation “additively” in the beginning.

9. Since Fp is a field, the polynomial f(x) = xk−1 can have at most k roots.
This is possible only if r = 1 (one cyclic factor) in the step (6) structure
theorem of the abelian group F∗p. This is the only step that uses the fact
that p is prime. Exercise 3 below demonstrates that there can be more
then one factor, and more than k roots of xk = 1, if n is not prime.

3



Assigned Exercises, to hand in

1. Let p be a rational prime and Fp = Z/(p) the finite field with p elements.
Suppose d is not a square, which means d ∈ Fp with d 6= x2 for any x ∈ Fp.
Let R be the set of p2 elements of the form x+ δy with the addition and
multiplication rules

(x+ δy) + (u+ δv) = (x+ u) + δ(y + v)

(x+ δy) · (u+ δv) = (xu+ dyv) + δ(xv + yu) .

This is a formal way of saying δ =
√
d, which is not in Fp because d is not

a square.

(a) Show that the non-zero squares in Fp are all the elements of the form
x = g2k, where g is a generator of F∗p. Use this to make a list of the
squares in F17.

(b) Show that R a ring. Identify the additive and multiplicative identity.

(c) Show that R is a field. Show that for any ξ = x+ δy ∈ R with ξ 6= 0
there is a unique η = u + δv ∈ R with ξη = 1. Construct a 2 × 2
matrix M(ξ) with entries in Fp so that ξη = 1 is equivalent to

M

(
u
v

)
=

(
1
0

)
.

Show that M(ξ) is invertible for ξ 6= 0 by showing that det(M(ξ)) 6=
0. How is the hypothesis that d is not a square come in?

2. Write f(x) = x12 − 1 as a product of monic polynomials irreducible over
Q. Explain how the degrees of the factors f = g1 · · · · ·gk are related to the
numbers φ(j) where j|n. The distinct complex roots of f have the form
ωj = e2πij/n for j = 0, . . . , n−1. For each factor gi, identify the set Ri with
ωj ∈ Ri if ωj is a root of gi. Show explicitly that gi(x) =

∏
j∈Ri

(x− ωj).
Note. This problem is about n = 12, but a lot of the structure may be
understood with general n. Decide for yourself when you want to go from
general n to n = 12.

3. Find an n so that G = [Z/(n)]∗ is not cyclic. This G is the multiplicative
group of residue classes relatively prime to n. It has |G| = φ(n), and
φ(n) < n− 1 if n is not prime.

notation: |G| = the number of elements in G .

Unassigned Exercise 3 has more about the Euler φ function. Find the
group Cj1×Cj2×· · · (at least two non-trivial factors) that G is isomorphic
to. [This is related to Exercise 2.3 of Chapter 12.]
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4. If f(x) ∈ Z[x] and g(x) ∈ Z[x] with f(x) = g(x) for all x ∈ Z, then f = g
as polynomials (all coefficients equal). Now consider f, g ∈ Fp[x]. Show
that if f(x) = g(x) for all x ∈ Fp, and if deg(f) < p, deg(g) < p, then
f = g as polynomials. Give an example to show it need not be true if
deg(f) ≥ p.

5. Consider the four variable polynomial f(x, y, z, w) = xw − yz (the deter-
minant). Show that f is irreducible in C[x, y, z, w].

6. Prove the following theorem. Let F be a field and f ∈ F[x] a polynomial.
If there is a rational function r ∈ F(x) with r(x)2 = f(x), as elements of
F(x), then there is a polynomial g ∈ F[x] and an a ∈ F with ag2 = f .
Hint. F[x] is a domain where there is unique prime factorization up to
units. What are the units in F[x]?

Unassigned Exercises, for practice, not to hand in From the Chapter 12
exercises: 2.1, 2.2, 2.3, 4.1 Also

1. Find generators for F∗p for p = 2, 3, 5, · · · . You will see that it isn’t easy
and there doesn’t seem to be a pattern to them.

2. Check that 2p ≡ 2 mod p for p = 3, 5, 7, · · · . For example, 25 = 32 and
32 = 30 + 2 ≡ 2 mod 5. Check that this is not true for non-primes. For
example, 26 = 64 ≡ 4 mod 6. It is possible that xn ≡ x mod n even when
n is not prime. Can you find an example?

3. To illustrate the formula, where m = n is a term in the sum but m = 1 is
not.

n =
∑
m|n

φ(m) .

(a) (related to Exercise 2 above) Make a list (non-zeros mod 30) of the
non-zero integers {1, 2, · · · , 29}, non-zeros mod 30. Underline the
ones relatively prime to 30 and count them.

(b) Make a list of the integers {1, 2, · · · , 14}, underline the ones relatively
prime to 15. For each k in this list, find 2k in your list from part (a).
It should not be underlined, but underline it.

(c) Do the same for m = 10, underline the ones relatively prime to 10
and for each such k, find 3k in the list from part (a). The pattern
from parts (b) and (c) is that 2 is the complementary factor to 15
(2 · 15 = 30) and 3 is the complementary factor to 10.

(d) Continue with factors m = 6, (complementary factor = 5), with
m = 5 (complementary factor = 2 · 3 = 6), m = 3 and m = 2. When
you’re done, every number in the part (a) list should be underlined
exactly once.
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4. Show that the polynomial f(x) = x3 + 2x2 + 3x+ 5 is irreducible in Z[x].
Hint. Look mod 2 and see that x = 0 and x = 1 are not roots. If f factors
in Z then f factors in F2 (why)? You also can check that f mod 2 is on
the list of irreducible polynomials in F2[x] on page 373.
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