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One of the primary goals of my work in the history of mathematics is
to make known the way in which Leopold Kronecker’s effort to base the
mathematics of his and preceding generations on what he called “general-
ized arithmetic”—the algebra of polynomials with integer coefficients—was
overruled at the end of the 19th century and never revived. This is a ques-
tion of “style” in a very broad sense. Kronecker’s style of algorithmic and
finitistic mathematics, which bases concepts and proofs on concrete polyno-
mial constructions, satisfies my own demands, both aesthetic and technical,
but is so antithetical to today’s transfinite set-theoretic constructions that
it is rejected as unworkable today. The prevailing belief is that there is
only one rigorous way to do mathematics and that it must be followed. My
thesis is that mathematics would be enriched by opening the forum to other
styles of thought and presentation.

I was encouraged by James Pierpont’s statement in his essay “Mathe-
matical Rigor, Past and Present,” [5] that “Personally [I] do not believe
that absolute rigor will ever be attained and if a time arrives when this is
thought to be the case, it will be a sign that the race of mathematicians
has declined.” Pierpont, after making this statement, so surprising to to-
day’s mathematicians, goes on, not to attempt to describe rigor, but to
“pass in review some examples of what were regarded at the time as good
mathematical demonstrations.”

My article “Euler’s Definition of the Derivative” [2] presents a view
of Euler’s standards of rigor that is very different from Pierpont’s, who
states that, “Judged by modern standards [Euler’s] demonstrations are
quite worthless.” I believe that, carefully read and properly understood,
Euler’s demonstrations are as rigorous and convincing as modern mathe-
matics, as I tried to show in the specific case of Euler’s treatment of deriva-
tives. It is rejected today for reasons of style, not of rigor. The modern
reader tends to believe Euler is describing limits in an inadequate way, but
in fact Euler’s definition of the derivative does not involve limits at all.
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A key attitude of the second half of the 19th century was expressed
by Richard Dedekind when he said [1]: “My efforts in number theory
have been directed toward basing the work not on arbitrary representa-
tions [Darstellungsformen] or expressions but on simple foundational con-
cepts and thereby—although the comparison may sound a bit grandiose—to
achieve in number theory something analogous to what Riemann achieved
in function theory, in which connection I cannot suppress the passing re-
mark that in my opinion Riemann’s principles are not being adhered to in
a significant way by most writers—for example, even in the newest works
on elliptic functions; almost always they disfigure the theory by unneces-
sarily bringing in forms of representation [Darstellungsformen again] which
should be results, not tools, of the theory.” (My translation.)

I summarized the argument I made against this statement of “Riemann’s
principles” in a talk I recently gave [3] with the title “The Algorithmic Side
of Riemann’s Mathematics.” Invoking Riemann’s work on the Riemann-
Siegel formula, on establishing the analytic continuation and the functional
equation of the zeta function, on transforming hypergeometric functions,
and on conceptualizing and working with “Riemann surfaces,” I tried to
show that Riemann was not only a master of what Dedekind called Darstel-
lungsformen, but also that they were very much tools, not results, of his
theories.

Dedekind’s attitude is repeated and even amplified in David Hilbert’s
statement in the introduction to his famous Zahlbericht [4] that, “I have
sought to avoid Kummer’s vast computational apparatus and thereby to
realize Riemann’s fundamental principle that proofs should be effected not
by computation but solely by concepts” (my translation). To me, this
approach to the subject not only deprives his readers of the experience
of Kummer’s fertile and beautiful techniques but is a degradation of their
rigor insofar as Hilbert replaces the banned “computational apparatus” with
“constructions” that are transfinite algorithms that fall far short of what
Kummer and his student Kronecker would have regarded as rigor.

Kronecker’s ideas of rigor are indicated in a famous statement, “If I
still have the time and the energy, I will myself show the mathematical
world that not only geometry but also arithmetic can point the path to
analysis, and certainly a more rigorous one. If I cannot do this, then another
will who comes after me, and the world will recognize the inexactitude of
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the types of proof now employed in analysis” (my translation). This and
other indications Kronecker gave, as well as the body of his mathematical
work, show clearly that he wanted to base all of his concepts and proofs on
finite (but not necessarily practical) algorithms and computations. Pierpont
shows sympathy and even admiration for Kronecker’s view.

I differ from Pierpont, however, when he casts L. E. J. Brouwer as the
mathematician of Pierpont’s time whose principles were closest to Kro-
necker’s. From the point of view of style, Kronecker and Brouwer could
hardly be more different. Kronecker was a product of a classical German
Bildung while Brouwer was a mystic. Kronecker was primarily interested in
mathematics, not the philosophy of mathematics, and he was a careful stu-
dent of both the classics of mathematics and the work of his contemporaries,
while Brouwer worked in mathematics primarily to validate his philosophi-
cal principles, and worked in the new field of topology in idiosyncratic ways.
Kronecker was a banker, while Brouwer was a prophet.

In my opinion, the association of Brouwer with Kronecker’s program has
done great damage to a proper understanding of what Kronecker’s vision
for mathematics was.

In conclusion, I believe that a broad exploration of various styles—in
the sense of the word I have tried to indicate—would enrich mathematics
and promote rigor in the only way that remains possible if one agrees with
Pierpont that absolute rigor is a mirage. It would release the stranglehold
that set theory currently has on mathematics and promote approaches to
topics like number theory, algebraic geometry, and the classical theory of
functions that are better adapted to these topics and that use more con-
structive, direct, and comprehensible methods.
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