
ROOTS OF SOLVABLE POLYNOMIALS OF PRIME DEGREE
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Abstract. An explicit formula for the most general root of a solvable poly-
nomial of prime degree is stated and proved. Such a root can be expressed

rationally in terms of a single compound radical determined by the roots of
a cyclic polynomial whose degree divides µ − 1, where µ is the prime. The

study of such formulas was initiated by a formula of Abel for roots of quintic

polynomials that are solvable, and was carried forward by Kronecker and a
few others, but seems to have lain dormant since 1924. A formula equivalent

to the one given here is contained in a paper [14] of Anders Wiman in 1903,

but it seems to have been forgotten.

1. Introduction

Shortly after Niels Henrik Abel’s death in 1829, A. J. Crelle published an ex-
cerpt [1] from a letter he had received from Abel in 1826, in which Abel had stated,
without explanation, a formula that he claimed represented the most general root
of a solvable quintic with rational coefficients. That is, the formula described a
quantity in an extension of the field of rational numbers, constructed using radi-
cals, that not only was a root of an irreducible polynomial of degree 5 with rational
coefficients, but also contained enough parameters—so Abel claimed—that it could
represent, when the parameters were correctly chosen, a root of any given irre-
ducible polynomial of degree 5 with rational coefficients, provided, of course, that
the polynomial was one whose roots were expressible by radicals.

Abel’s amazing and baffling assertion probably inspired1 Leopold Kronecker’s
similarly amazing paper [10] of 1853, in which he generalized Abel’s formula to the
case of roots of solvable polynomials of any prime degree. Kronecker’s formula ac-
complished in the general case somewhat less than Abel’s formula had accomplished
in the quintic case, because it depended upon being able to construct the roots of
the most general cyclic polynomial of any given degree, whereas Abel provided the
roots that were needed in the quintic case (see Appendix 1 below).2 Kronecker, like
Abel, did not prove his assertions.

The author thanks Thierry Coquand and David Cox for valuable comments on earlier versions

of this paper.
1The link between [1] and Kronecker’s work is obscured by the fact that Volume 4 of Kronecker’s

Werke directs the reader to the republication of [1] in the 1881 edition of Abel’s Oeuvres, and
this edition does not cite the original 1830 publication. Kronecker mentions [1] explicitly on the

first page of [10], and later in the paper gives a specific reference—to the 1839 edition of Abel’s

Oeuvres, not to the original publication which he surely knew—but he says it was wenig beachtete
(little noticed).

2In [10], Kronecker does make some remarks about this secondary problem of constructing
roots of cyclic polynomials, as is mentioned in Section 5 below. The genesis of class field theory

lies in these remarks, but that is another story.
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The formulas of Abel and Kronecker in fact are valid only in what might be
considered to be the generic case, the one in which ν = µ− 1 in the notation used
below.3 Heinrich Weber’s Lehrbuch der Algebra ostensibly gives a formula that is
valid generally, but in fact it only covers this generic case (see Section 6 below).
The first published formula that was valid in all cases was that of Anders Wiman
in 1903 [14].

After Robert Fricke’s revision [7] of Weber’s Lehrbuch in 1924, the only inves-
tigation of explicit formulas for roots of solvable polynomials of prime degree that
I am aware of is my own paper [5] in which I reached a formula equivalent to
Wiman’s, although I didn’t realize it at the time. I had found Wiman’s proof too
difficult to follow, and only recently, while revising and simplifying my own proof
and reviewing Wiman’s, did I realize that the two formulas agree. The exposition
in the present paper shortens and clarifies the one given in [5] and corrects an error
in that paper (see Appendix 2 below).

It probably needs to be emphasized that Abel’s formula is not “a solution of
solvable quintics” in the sense that the quadratic formula is a solution of quadratics,
because it does not give an algorithm for going from a given solvable quintic to an
expression of its roots in terms of radicals. Instead, it is an expression involving
radicals and parameters that has the property that, given any solvable quintic, it
is possible to choose values for the parameters in such a way that the quantity
is a root of the given quintic. The proof that the formula has this property does
not provide an algorithm for finding the requisite values of the parameters. (See
Appendix 3 below.)

The formula developed here does the same for solvable polynomials of any odd
prime degree µ. Section 2 presents an algorithm for constructing solvable extensions
of prime degree µ of a given ground field K—that is, extensions of K of degree µ
in which all quantities can be expressed in terms of radicals. Section 3 proves
that every irreducible solvable polynomial of degree µ has a root in some extension
constructed in this way. Section 4 then gives a formula (4.1) for the most general
quantity in a field constructed by the algorithm, thereby describing the most general
quantity expressible in terms of radicals that is a root of an irreducible polynomial
of degree µ. The final two sections explain the relation of formula (4.1) to the
formulas of Abel and Kronecker.

2. A Construction of Solvable Extensions of Prime Degree

Let K be a field that is either the rational field Q or a field obtained from Q
by a finite number of adjunctions, either algebraic or transcendental.4 A solvable
extension of K of prime degree can be constructed using the following algorithm.

3In a later paper, Kronecker gave formulas (see (III) and (IV) in [11]) that closely resemble

formula (4.1) below, which shows, in my opinion, that he understood the general case, at least by
1856. In all likelihood Abel would also have understood the general case.

4This is, I believe, the type of field Kronecker posited, although he did not of course use the
term “field” and there is some ambiguity in his description. At first he just refers to “quantities”
A, B, C, . . . that may occur in the coefficients of the polynomial. He then says that “special

values” are not to be substituted, which would seem to indicate that he intends for them to be
transcendental quantities, but then, in the next to last paragraph of the paper, he considers the
case in which A, B, C, . . . are integers.
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Theorem 2.1. Given a field K of the type just described and a prime µ > 2,
choose a factor ν of µ − 1, an irreducible cyclic5 polynomial f(x) of degree ν with
coefficients in K, and a positive integer δ whose order mod µ is ν. Let r1, r2, . . . ,
rν be the roots of f(x), in one of their cyclic orders, and let K ⊂ K(r) ⊂ K(w) be
the extension of K obtained by first adjoining one root r (and therefore all roots)

of f(x) and then adjoining a µth root w of rδ
ν−1

1 rδ
ν−2

2 rδ
ν−3

3 · · · rν . Assume K(w)
actually extends K(r)—that is, assume this quantity does not already have a µth root
in K(r). Then K(w) is an extension of K of degree µν. It has an automorphism
of order ν that extends the automorphism6 ri 7→ ri+1 of K(r), and the quantities
in K(w) that are unmoved by that automorphism constitute an extension of K of
degree µ, as was to be constructed.

The cyclic polynomial f(x) is a fortiori solvable, so rδ
ν−1

1 rδ
ν−2

2 rδ
ν−3

3 · · · rν is
expressible by radicals. Therefore w is expressible by radicals, which implies that
K(w) is a solvable extension of K, as are all of its subextensions. In particular, the
subextension of degree µ constructed by the theorem is solvable.

Proof. Let Ri = rδ
ν−1

i+1 r
δν−2

i+2 r
δν−3

i+3 · · · ri+ν . The assumption that R0 is not a µth
power in K(r) implies that Ri has ν distinct values, as the following argument
shows.7 If ν = 1 there is nothing to prove. If ν > 1 and if R0 = Rκ for some κ in

the range 0 < κ < ν, then, with a = rδ
κ−1

1 rδ
κ−2

2 · · · rκ and b = rδ
ν−κ−1

κ+1 rδ
ν−κ−2

κ+2 · · · rν ,

one finds R0 = aδ
ν−κ

b and Rκ = bδ
κ

a. If R0 and Rκ were equal, one would have

aδ
ν−κ

b = bδ
κ

a, from which aδ
ν−κ−1 = bδ

κ−1 would follow. Then Rδ
κ−1

0 would be

aδ
ν−κ(δκ−1)bδ

κ−1 = aδ
ν−δν−κ · aδν−κ−1 = aδ

ν−1. Since δκ − 1 is relatively prime to
µ (because κ is less than the order ν of δ mod µ), there would be integers s and t

for which (δκ− 1)s = tµ+ 1 and it would follow that Rtµ+1
0 = R

(δκ−1)s
0 = a(δ

ν−1)s,
which is impossible, because the right side is a µth power while the left side is R0

times a nonzero µth power, contrary to the assumption that R0 is not a µth power.
Therefore, the identity is the only element of the cyclic Galois group of f(x) that

leaves the Ri fixed, which means that adjoining any one Ri to K gives all of K(r).
By a basic lemma of Galois theory,8 the polynomial xµ − R0 is irreducible over

K(r), so K(w) is an extension of K(r) of degree µ and therefore is an extension of
K of degree µν.

Let m be the integer δν−1
µ . The µth power of wδ

rm1
is

Rδ0
rδ
ν−1

1

=
r1R

δ
0

rδ
ν

1

= R1, so

w1 = wδ

rm1
is a root of

G(x) =

ν−1∏
i=0

(xµ −Ri),

the same polynomial with coefficients in K of which w is a root. This polynomial
is irreducible over K because K ⊂ K(w) is an extension of degree µν, so the rule
w 7→ w1 determines an automorphism of K(w) that carries R0 7→ R1 and therefore
carries ri 7→ ri+1 for each i. Iteration of this automorphism carries w1 7→ w2 7→

5A cyclic polynomial is one whose Galois group is cyclic. In particular, adjunction of one root
of an irreducible cyclic polynomial constructs a splitting field.

6Subscripts on r are to be treated as integers mod ν. Thus, this automorphism carries rν 7→ r1.
7I am indebted to Thierry Coquand of the University of Gothenburg for this argument.
8If a polynomial xµ − a is reducible over a field containing a, then it must have a linear factor

over that field. For example, see [3], Proposition 4.2.6.
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· · · 7→ wν , where wi is a µth root of Ri for i = 1, 2, . . . , ν respectively. Specifically,

w2 =
(
wδ

rm1

)δ · 1
rm2

= wδ
2

rmδ1 rm2
, w3 = wδ

3

rmδ
2

1 rmδ2 rm3
, . . . , wν = wδ

ν

(rδ
ν−1

1 rδ
ν−2

2 ··· rν)m
= wδ

ν

wµm =

w, which shows that the νth iterate of the automorphism is the identity. The
formula wµi = Ri shows that the ν images w1, w2, . . . , wν = w are distinct, so the
automorphism has order ν.

It remains to show that the subfield of K(w) consisting of quantities that are
unmoved by this automorphism has degree µ over K. To this end, let a primitive
µth root of unity α be adjoined, if necessary, to K(w) to construct a splitting field

Ω = K(w,α) of G(x) over K. (Each factor of G(x) =
∏ν−1
i=0 (xµ−Ri) has a root wi

in K(w), so G(x) splits into linear factors after α is adjoined.)
An element of the Galois group of G(x) must carry w to one of the roots of G(x)

in Ω, say w 7→ αjwi, and must carry α to some power of α other than 1, say α 7→ αε

where ε 6≡ 0 mod µ. Such an automorphism carries wµ 7→ wµi ; thus, R0 7→ Ri for
this i and the automorphism carries rk 7→ rk+i for each k. As was shown above in
the case c = 0,

wc+l =
wδ

l

c

(rδ
l−1

c+1 r
δl−2

c+2 · · · rc+l)m

from which it follows that the automorphism carries wl 7→ αjδ
l

wi+l for all l. (Use
the formula with c = 0 for wl and with c = i for wi+l, then use w 7→ αjwi and

rk 7→ rk+i.) When α 7→ αε as above, this gives the formula αkwl 7→ αεk ·αjδlwi+l =

αεk+jδ
l

wi+l for the effect of an element of the Galois group of G(x) on the roots of
G(x). (Every permutation of the roots of G(x) that is effected by the Galois group
must have this form, but there may well be permutations of this form that are not
effected by the Galois group, because ε is not independent of αjwi.)

In particular, the only possible images of t = w1 +w2 + · · ·+wν under the Galois

group are αjδwi+1 +αjδ
2

wi+2 + · · ·+αjwi+ν . The exponent on α in the coefficient
of any wk determines the exponent on α in the coefficient of all others, because for
wk+1 the exponent is δ times what it is for wk (mod µ). Therefore, the possible

conjugates of t under the Galois group are tk = αkw1+αkδw2+αkδ
2

+· · ·+αkδν−1

wν
for k = 1, 2, . . . , µ, so t has at most µ distinct conjugates in Ω.

By basic Galois theory, the polynomial
∏µ
k=1(x− tk) is a power of an irreducible

polynomial with coefficients in K. Since µ is prime, then, either t is a root of an
irreducible polynomial of degree µ or the tk are all the same and are in K. The
latter is impossible because

∑µ
k=1 α

−ktk = µw1 is not zero, as it would be if t = tk
for all k, because then it would be t

∑µ
k=1 α

−k = 0. Therefore, adjunction of t gives
a subextension K ⊂ K(t) ⊂ K(w) of degree µ. As the above formula for the action
of the Galois group on the roots of G(x) shows, the elements of the Galois group
that leave t unmoved are precisely those that permute the w’s cyclically, and the
proof of the theorem is complete. �

3. The Construction Finds All Solvable Extensions of Prime Degree

Theorem 3.1. Any solvable irreducible polynomial g(x) of prime degree µ with
coefficients in K has a root in the extension of K constructed by the method of
Theorem 2.1 when ν, f(x), and δ are chosen suitably.

Proof. As was proved by Galois himself [8], the Galois group of g(x), when it is
regarded as a group of permutations of the roots qk of g(x), is a group generated by
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two permutations qk 7→ qk+1 and qk 7→ qζk for some integer ζ 6≡ 0 mod µ, when the
roots are suitably ordered (and when the subscripts on the roots are interpreted as
integers mod µ).

Let Ω be the field obtained by adjoining a µth root of unity α 6= 1 to the
splitting field of g(x), and let G be the Galois group of Ω over K. Since Ω is
a normal extension of the splitting field of g(x) (adjoining one µth root of unity
α 6= 1 adjoins all because all are powers of any one), the Galois group of g(x) is
a quotient group of G. In particular, the order of G is divisible by µ, so G must
contain an element of order µ, call it σ. Since σ partitions the µ − 1 powers of α
other than 1 into orbits, each of whose lengths divides the prime µ, these orbits
must all have length 1, which is to say that σ(α) = α. If σ left any root of g(x)
fixed, the same argument would imply that it left all roots of g(x) fixed, which
would imply that σ was the identity, contrary to the assumption that it has order
µ. Therefore, since σ must act on the roots without leaving any fixed, and since
it must effect a permutation of the form qk 7→ qak+b, it must permute the roots
of g(x) according to the formula qk 7→ qk+b for some integer b 6≡ 0 mod µ. Since
each such permutation is a power of any other, σ can be assumed without loss of
generality to carry qk 7→ qk+1 and α 7→ α, which determines its action on Ω.

Consider the quantities si =
∑µ
k=1 α

kqki in Ω. (These are the Lagrange re-
solvents of g(x). The fact that qk is defined for all integers k implies that si is
defined for all integers i. It depends only on the class of i mod µ and is zero
when i ≡ 0 mod µ. In what follows, i will be assumed to be nonzero mod µ.)

The effect of σ on si is given by σ(si) =
∑µ
k=1 α

kqki+1 =
∑µ
l=1 α

i−1(l−1)ql =

α−i
−1 ∑µ

l=1 α
i−1lql = α−i

−1

si where i−1 represents an integer that is inverse to
i mod µ. Given an element θ of G, there is a unique k mod µ for which θ = σkh
where h leaves qµ unmoved, namely, the k for which θ(qµ) = qk. (Composition is
here written from right to left. Of course θ must carry a root of g(x) to a root of
g(x).) In particular, the subgroup H of elements of G that leave qµ unchanged has
index µ. Any h inH carries α 7→ αu and qk 7→ qkv for some integers u and v, neither
of which is 0 mod µ, so it carries si 7→

∑µ
k=1 α

kuqkvi =
∑µ
l=1 α

lqlu−1vi = su−1vi,
where u−1 is an integer that is inverse to u mod µ. Assigning to each h in H the
corresponding integer u−1v in the multiplicative group of nonzero integers mod µ
gives a homomorphism from H to a cyclic group of order µ− 1. The image of this
homomorphism is of course a cyclic group of order ν for some divisor ν of µ − 1.
Let δ be an integer whose order mod µ is ν. Then the orbit of si under the action
of H contains precisely those sk for which k = iδj , where j = 1, 2, . . . , ν. In other
words, the permutations of the si effected by H are those of the form si 7→ siδj .

The binomial theorem implies that if δν ≡ 1 mod µ2 then (δ + µ)ν 6≡ 1 mod µ2,
so one can assume without loss of generality that δν 6≡ 1 mod µ2.

At least one of the quantities si must be nonzero, because when c is defined to
be q1 + q2 + · · ·+ qµ, the formula µqµ = c+ s1 + s2 + · · ·+ sµ−1 holds, and the left
side is not in K (because g(x) is irreducible over K) but the right side would be in
K if the si were all zero (c is a symmetric function of the roots of g(x)). Choose
an integer ι for which sι 6= 0.

When ν = 1, let w = sι. An element σkh of G that leaves sι fixed must have
k ≡ 0 mod µ because h leaves sι 6= 0 fixed (because ν = 1) and σ multiplies

it by α−ι
−1 6= 1. Such an element leaves si fixed for every i, so it leaves qµ =

1
µ (c+ s1 + s2 + · · ·+ sµ−1) fixed. Therefore, K(sι) contains a root of g(x). On the
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other hand, sµι is fixed under all of G, which means that K(sι) adjoins a µth root
to K, which is the construction of Theorem 2.1 in the case ν = 1.

When ν > 1, let ν quantities in Ω be defined by

(3.1) rj =
sιδν−j

sδιδν−j+1

.

(Note that the denominators are nonzero, because they are the δth powers of the
quantities in the orbit of sι under H.) Since σ multiplies the numerator of rj by

α−ι
−1δ−ν+j and multiplies the denominator by the same factor (α−ι

−1δ−ν+j−1

)δ,
σ(rj) = rj for each j. Since elements of H permute the sιδk cyclically, they also
permute the rj cyclically, and since σ and H generate G, it follows that G effects
only cyclic permutations of the rj and therefore that the rj are the roots of a cyclic
polynomial of degree ν with coefficients in K, call it f(x). That f(x) is irreducible
will be shown below.

When the rj are defined in this way, the quantity R0 = rδ
ν−1

1 rδ
ν−2

2 · · · rδν−1rν in
Ω is a product in which the numerator of each term is cancelled by the denominator

of the following term, leaving just the denominator of rδ
ν−1

1 and the numerator of

rν , which is to say R0 = sι/s
δν

ι , so R0 is the µth power of s−mι , where m = δν−1
µ

and where, by the choice of δ, m 6≡ 0 mod µ.
Thus, Ω contains a µth root of R0, which means that it contains a root of the

polynomial G(x) =
∏ν−1
i=0 (xµ − Ri), where the Ri are the ν conjugates s−δ

ν+1
ιδi of

R0 under G. Since elements of G permute the ri cyclically, these conjugates are

Ri = rδ
ν−1

i+1 r
δν−2

i+2 r
δν−3

i+3 · · · ri+ν for i = 0, 1, . . . , ν − 1 and G(x) has coefficients in

K. By the definition of δ, H acts transitively on the s−mιδj ; these ν quantities are
distinct, because they are nonzero and application of σ to them multiplies them by

different powers of α, namely, it multiplies s−mιδj by αmι
−1δ−j (and m 6≡ 0 mod µ).

The elements σkh of G then carry s−mι to µν distinct quantities in Ω—namely, the
quantities ακs−mιδj where κ is interpreted mod µ and j is interpreted mod ν—which
means that the Galois group G acts transitively on the roots of G(x) and that G(x)
is irreducible over K. In particular, the ν quantities R0, R1, . . . , Rν−1 are distinct,
which implies that r1, r2, . . . , rν are distinct, so f(x) is irreducible.

An element σkh of G that leaves w = s−mι fixed must have k ≡ 0 mod µ and
must leave sι fixed, which means that it leaves all of the si fixed and therefore leaves
the root q = 1

µ (c+ s1 + s2 + · · ·+ sµ−1) of g(x) fixed. Thus q is in K(w). There is

an h in H that carries sι 7→ sιδ, and the restriction of such an h to K(w) = K(s−mι )
is an automorphism of order ν that leaves q fixed (it permutes the summands of
1
µ (c+ s1 + s2 + · · ·+ sµ−1)). This automorphism permutes the wi = s−mιδi cyclically,

so q is in the subextension of K(w) constructed by Theorem 2.1 for this choice of
ν, f(x), and δ. �

4. The Most General Root of an Irreducible Solvable Polynomial of
Prime Degree with Coefficients in K

Theorems 2.1 and 3.1 prove that a root of an irreducible solvable polynomial of
prime degree µ—which by definition can be expressed in terms of radicals—can be
expressed rationally in terms of a single compound radical

w =
µ

√
rδ
ν−1

1 rδ
ν−2

2 rδ
ν−3

3 · · · rν
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of the type constructed in Theorem 2.1. Specifically, these rational expressions can
be put in the following canonical form:

Theorem 4.1. Each quantity in the solvable extension of K of degree µ that is
constructed by Theorem 2.1 has one and only one representation in the form

(4.1) c+

κ−1∑
i=0

ν∑
j=1

Fi(rj)w
γi

j

where κ = µ−1
ν , where c is in K, where γ is a primitive root mod µ, where the

κ polynomials Fi(x) with coefficients in K all have degree less than ν, and where
w1, w2, . . . , wν , r1, r2, . . . , and rν can all be expressed rationally in terms of any
one wj.

Corollary 4.2. The expression (4.1) describes a quantity in K(w) that is un-
changed by wk 7→ wk+1 because this cyclic permutation of the w’s permutes the
terms of each sum over j in (4.1) cyclically, so the quantity it describes generates
a subextension of K(w) whose degree divides µ; therefore, unless the quantity is
in K, it is a root of an irreducible polynomial of degree µ with coefficients in K.
Conversely, any quantity that is expressible in terms of radicals and is a root of an
irreducible polynomial of degree µ with coefficients in K can be expressed in this
form, as follows from Theorems 3.1 and 4.1. In what might be called the generic
case, when ν = µ− 1, (4.1) becomes

c+ F (r1)w1 + F (r2)w2 + · · ·+ F (rµ−1)wµ−1,

which is the form given by Abel (in the case µ = 5) and Kronecker.

Proof. The uniqueness of an expression of such a quantity in the form (4.1) follows
from existence, because (4.1) contains 1 + κν = µ constants and the extension
constructed in Theorem 2.1 is a vector space of dimension µ over K.

Let q be in K(w), say q =
∑µ−1
i=0 aiw

i, and assume it is in the subextension of
Theorem 2.1, which is to say that it is unchanged by the automorphism of K(w)

that carries wk 7→ wk+1. Then q = 1
ν ·
∑ν
l=1

∑µ−1
i=0 aiw

i
l . Since a sum of quantities

of the form (4.1) has the form (4.1), it will suffice to show that each ai
ν ·
∑ν
l=1 w

i
l

has the form (4.1). Since wµi is rational in rj for any j, it will suffice to prove that∑ν
l=1 F (rl)w

k
l can be put in the form (4.1) for every k in the range 0 ≤ k < µ and

for every polynomial F (x) of degree less than ν with coefficients in K. Because,

as was shown in Section 2, wl+1 =
wδl+1

rml+1
, this sum can also be written in the form∑ν

l=1 F (rl+1)
wδkl
rml+1

, which is of the form
∑ν
l=1 F1(rl)w

δk
l , where F1(x) has degree

less than ν and coefficients in K. (Adjoining one r adjoins all.) Moreover, the
exponent δk can be replaced by the smallest positive integer congruent to it mod
µ. Therefore, if

∑ν
l=1 F (rl)w

k
l can be put in the desired form for one value of k

in the range 0 ≤ k < µ, it can be put in the desired form for any value of k in
that range that is congruent to kδj mod µ for any positive integer j. The theorem
then follows, because every k is congruent mod µ to an integer of the form γφδψ

for some φ in the range 0 ≤ φ < κ. �
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5. The Formulas of Abel and Kronecker

Abel’s formula [1] for the most general root of a solvable quintic with rational
coefficients is (when the notation is altered to agree with the notation used above)

x = c+F (r1) 5

√
r1r22r

4
3r

3
4 +F (r2) 5

√
r2r23r

4
4r

3
1 +F (r3) 5

√
r3r24r

4
1r

3
2 +F (r4) 5

√
r4r21r

4
2r

3
3,

where F (ri) = K + K ′ri + K ′′ri+2 + K ′′′riri+2 for rational numbers K, K ′, K ′′,
K ′′′, and where r1, r2, r3, and r4 are given by the explicit formulas (5.1) below.

The fact that the exponents under his radicals are 1, 2, 4, 3 instead of 1, 2, 4, 8

as in Theorem 4.1 can be ignored, because 5

√
r8i−1 = ri−1 5

√
r3i−1 and the factor ri−1

can be incorporated in the coefficient F (ri) because adjunction of one r adjoins all.
This description of the roots x is weaker than Theorem 4.1 in three ways. First,

it includes only the case ν = 4 of Theorem 4.1. Second, it does not explain that
any one of the four 5th roots in the formula determines the other three rationally
(although there can be little doubt that Abel would have understood this). Finally,
as Weber [13] pointed out, Abel’s form of F (ri) is not general enough,9 because
1, r1, r3, r1r3 do not form a basis of Q(r) over Q—clearly they are not linearly
independent over Q—and therefore neither do 1, r2, r4, r2r4—when the ri are given
by his formulas. Thus, some quantities of the form (4.1) with µ = 5 and ν = 4 are
not expressible in Abel’s form.

However, Abel’s description is much stronger in that he gives an explicit formula
for the most general set of four quantities ri that are the roots of a cyclic quartic,
namely,

(5.1) r1 = m+ n
√

1 + e2 +

√
h(1 + e2 +

√
1 + e2)

r2 = m− n
√

1 + e2 +

√
h(1 + e2 −

√
1 + e2)

r3 = m+ n
√

1 + e2 −
√
h(1 + e2 +

√
1 + e2)

r4 = m− n
√

1 + e2 −
√
h(1 + e2 −

√
1 + e2)

where h, e, m, and n are rational numbers. The validity of these formulas is proved
in Appendix 1 below, which implies that they can be used in Theorem 4.1 to give
a formula for the most general root of a solvable quintic with rational coefficients
in the case ν = 4.

Kronecker’s formula for the roots of a solvable polynomial of prime degree µ is
contained in formulas (II) and (III) of [10] and they amount to the case ν = µ− 1
of Theorem 4.1. Like Abel, he does not mention the fact that the needed µth roots
are determined rationally once one is chosen. Unlike Abel, he emphasizes that the
formula not only represents all roots of solvable polynomials of degree µ but also
represents only such roots. Also unlike Abel, he describes (in his formula (IV)) the
remaining µ− 1 conjugate roots using different µth roots αjw of wµ.

As for the determination of the quantities ri that are needed by the formula—
the roots of irreducible cyclic polynomials of (not necessarily prime) degree ν—
Kronecker states that his methods have enabled him to give a complete solution

9I find this lapse very puzzling. How could Abel have made the astonishing discovery of the
general formula, but then given this inadequate formula for F (ri) instead of the simple formula

K +K′ri +K′′r2i +K′′′r3i ? Was there perhaps a mistake in the transcription?
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(. . . Methode, die ich in allen anderen Fällen mit Erfolg angewendet habe . . . ) ex-
cept in cases in which ν is divisible by 8, but he only hints at what those meth-
ods might be, saying that his communication is only a preliminary one (dieser
vorläufigen Mittheilung), but as far as I know he never did divulge his methods.

6. Cases in Which ν < µ− 1

Both Abel and Kronecker seem to ignore cases in which ν < µ−1. For example,
there seems to be no way to use the formula they both give, namely, x = c +
F (r1)w1 +F (r2)w2 +F (r3)w3 +F (r4)w4, to represent the quantities given by (4.1)
in the case K = Q, µ = 5, ν = 1, r1 = 2, δ = 2, which are simply the quantities
c0+c1

5
√

2+c2( 5
√

2)2+c3( 5
√

2)4+c4( 5
√

2)8. The rational coefficients ci may be chosen
arbitrarily, whereas in the formula of Abel and Kronecker the last four terms are
all determined once one is specified.

This observation also causes me to doubt the formula Weber gives in his Lehrbuch
der Algebra [13], §194, which is essentially identical to Kronecker’s, but Weber seems
to assert, more strongly than Abel and Kronecker did, that it applies even when
ν < µ − 1, because he first claims to prove it with the additional assumptions
that the Lagrange resolvents (the si above) are all nonzero and the roots of the
cyclic equation of degree µ−1 (the ri above) are distinct and then eliminates these
assumptions. However, as was shown above, if only the case ν = µ − 1 is being
considered, then the Lagrange resolvents are all conjugate in Ω, which means they
are necessarily all nonzero because at least one sι must be nonzero, and the ri are
necessarily distinct. That is, these extra conditions that are removed are in fact
automatically fulfilled for roots of equations for which ν = µ− 1, so the extra work
Weber is doing would be justified only if he means to treat cases in which ν < µ−1.

My doubts about Weber’s formula stem not only from the fact that I find his
proof impossible to follow and the fact that the formula does not seem to describe
the most general nonconstant quantity in Q( 5

√
2) as above, but also from the fact

that Robert Fricke seems to have disowned Weber’s formula when he revised We-
ber’s Lehrbuch in 1924 [7]. Instead, he proves a more limited theorem, saying that
his treatment does not cover all cases and that the first exhaustive (erschöpfend)
treatment was given by Anders Wiman in 1903 [14]. Wiman’s formula (16) is
essentially formula (4.1) above.

Formulas (III), (IV), and (V) of Kronecker’s later paper [11] virtually imply
Wiman’s formula,10 and therefore formula (4.1), except that they are stated only
in the case K = Q and they are complicated by the fact that Kronecker incorpo-
rates in them (using what later became known as the Kronecker-Weber theorem)
a formula for the most general roots of a cyclic polynomial of degree ν (which is n
in Kronecker’s notation).

I also consider it very improbable that Abel would have completely overlooked
the cases ν = 1 or 2 of quintic equations, even though the formula in his 1826 letter
to Crelle does seem to overlook them.

10Formula (III) as it appears in Kronecker’s Werke has a typographical error; an exponent c
that should be outside the parentheses is inside them.



10 HAROLD M. EDWARDS

7. Appendix 1: Abel’s Formula for the Most General Roots of a
Cyclic Quartic with Rational Coefficients

Theorem 7.1. If r1, r2, r3, and r4 are the roots, in cyclic order, of an irreducible
cyclic polynomial of degree 4 with rational coefficients, then rational numbers h, e,
m, and n can be chosen in such a way that the ri are given by (5.1). Conversely,
for any rational numbers m, n, h, and e, these formulas give, provided eh 6= 0, the
roots of an irreducible cyclic polynomial of degree 4 with rational coefficients.

Proof. Let r1, r2, r3, and r4 be the roots, in cyclic order,11 of an irreducible cyclic
polynomial of degree four in a splitting field Q(r) of the polynomial. Let φ =
r1 + r2 − r3 − r4, ψ = r1 − r2 − r3 + r4, and θ = r1 − r2 + r3 − r4. Then
r1 = 1

4 (φ + ψ + θ + C) where C is the rational number r1 + r2 + r3 + r4. Since
±φ and ±ψ constitute an orbit under the action of the Galois group (which is
generated by ri 7→ ri+1) either all of them are zero or none are. If all were zero,
then r1 = 1

4 (θ + C) would have order at most 2 over Q (the orbit of θ contains

only ±θ), which is impossible. Therefore, φψ 6= 0 and e = φ2−ψ2

2φψ is a well-defined

quantity in the splitting field. The orbit of e under the Galois group contains just

±e, so e2 is rational. Similarly, h = φ2+ψ2

1+e2 is a rational number because it is

invariant under ri 7→ ri+1. With rational numbers e2 and h so defined, the identity(
x2 − (φ+ ψ)2

)(
x2 − (φ− ψ)2

)
= x4 − 2h(e2 + 1)x2 + h2e2(1 + e2)

is easily verified. (Note that 1 + e2 =
(
φ2+ψ2

2φψ

)2
.) The roots of this quartic are the

quantities in the orbit of φ+ψ under the Galois group, so adjoining one root gives
a subfield of Q(r). This subfield is of degree 4, because otherwise φ+ ψ would be
invariant under the square of a generator of the Galois group, which would mean
φ+ ψ = −φ− ψ or φ+ ψ = 0, which would again imply r1 = 1

4 (θ+C). Therefore,
adjunction of one root φ + ψ of this quartic gives all of Q(r) and in particular
gives an extension containing ±φ and ±ψ. Moreover, Q(r) contains all four roots
±(φ ±ψ) of x4− 2h(e2 + 1)x2 + h2e2(1 + e2), which, by the quadratic formula, are

±
√
h(1 + e2 ±

√
1 + e2). On the other hand, because φ2+ψ2

2φψθ is invariant under the

Galois group, θ is n · φ
2+ψ2

2φψ for some rational n, so one can write θ = ±n
√

1 + e2.

Then the formulas 4r1 = C + θ+ φ+ψ, 4r2 = C − θ+ φ−ψ, 4r3 = C + θ− φ−ψ,
and 4r4 = C − θ − φ+ ψ imply that 4r1, 4r2, 4r3, and 4r4, are represented by the
formulas (5.1) as quantities in the splitting field of x4− 2h(e2 + 1)x2 +h2e2(1 + e2)
and are in cyclic order. Since 4r1, 4r2, 4r3 and 4r4 are roots of an irreducible cyclic
quartic in cyclic order if and only if r1, r2, r3 and r4 are, the first statement of the
theorem follows.

Conversely, if r1, r2, r3, and r4 are given by (5.1), then r1−r3
2 =

√
h(1 + e2 +

√
1 + e2)

is a root of x4 − 2h(1 + e2)x2 + h2e2(1 + e2), call it p. The assumption that eh 6= 0

implies p 6= 0. Let q = e · p
2−h(1+e2)

p . Then p2q2 = e2 · (p2 − h(1 + e2))2 =

e2(p4−2h(1+e2)p2 +h2(1+e2)2) = e2(−h2e2(1+e2)+h2(1+e2)2) = h2e2(1+e2)

and p2 + q2 = p2 + h2e2(1+e2)
p2 = p4+h2e2(1+e2)

p2 = 2h(1 + e2). Therefore, x4 −
2h(1 + e2)x2 + h2e2(1 + e2) = (x2 − p2)(x2 − q2), which shows that the extension
Q(p) of Q obtained by adjoining the one quantity p contains 4 roots ±p, ±q of

11There are eight ways of writing them in cyclic order. The two that start with r1 are r1, r2,
r3, r4, and r1, r4, r3, r2.
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x4 − 2h(1 + e2)x2 + h2e2(1 + e2). In particular, p 7→ q determines an automor-
phism of the field. Since this automorphism does not carry p 7→ −p, it must carry
p 7→ ±q. Replacing the automorphism with its inverse reverses this sign, so one
can assume without loss of generality that the automorphism carries p 7→ q and

q 7→ −p, where, by the quadratic formula, q = ±
√
h(1 + e2 −

√
1 + e2). Therefore,

the automorphism reverses the sign of p2 − q2 = 2h
√

1 + e2 and permutes the 4
quantities in (5.1) cyclically, as was to be shown. �

Abel’s statement of the formula for the most general root of a solvable quintic
(in which ν = 4) is followed by an assertion that “I have found similar formulas for
equations of degree 7, 11, 13, etc.” Does this mean that he had found formulas like
(5.1) for the most general roots of cyclic polynomials of degrees 6, 10, and 12?

8. Appendix 2: A Correction

The main theorems of [5] (its Theorem 2.1 and Proposition 8.1) follow from the
theorems proved above. I regret to say that the proofs given in [5] are vitiated by
an erroneous description (Proposition 4.1) of the group G. Worse than this mistake
was my hasty and incorrect revision of Proposition 4.1 in [6].

The descriptions of G in both [5] and [6] are contradicted by Example 2.2 of [5],
in which µ = 5, f(x) = x2 − 2x − 1 and δ = 4. In this case, the subgroup that
leaves w1 + w2 fixed is the direct product of a group of order 2, generated by the
element τ which takes w1 ↔ w2 and α 7→ α, and a group of order 4, generated
by the element η which takes wi 7→ wi and α 7→ α2. The five quantities w1 + w2,
αw1 + α4w2, α2w1 + α3w2, α3w1 + α2w2, α4w1 + αw2 are permuted cyclically by
σ, which carries w1 7→ αw1, w2 7→ α4w2, and α 7→ α. Simple computations show
that neither τ nor η commutes with σ.

9. Appendix 3: Solving Solvable Polynomials

As was pointed out in Section 1, formula (4.1) accomplishes something quite
different from solving solvable polynomials of prime degree. However, it is not
entirely unrelated. Theorem 3.1 constructs ν, f(x), and δ that can be used in
Theorem 2.1 to construct an extension of K that contains a root of a given solvable
g(x) of degree µ. (The hardest step of the construction is the determination of the
action of the Galois group of g(x) on the roots of a given solvable g(x).) Once
that field is constructed, a root of g(x) can be constructed by factoring g(x) as a
polynomial with coefficients in the extended field (see [4]).
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