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Here, we offer an explanation for how selectivity for
orientation could be produced by a model with cir-
cuitry that is based on the anatomy of V1 cortex.
It is a network model of layer 4Ca in Macaque pri-
mary visual cortex (Area V1). The model consists
of a large number of integrate-and-fire, conductance
based point neurons, both excitatory and inhibitory,
which represent dynamics in a small patch of 4Ca —
1 mm? in lateral area — which contains four orienta-
tion hypercolumns. The physiological properties and
coupling architectures of the model are derived from
experimental data on layer 4Ca of Macaque. Con-
vergent feed-forward input from many LGN neurons
sets up an orientation preference, in a pinwheel pat-
tern with an orientation preference singularity in the
center of the pattern. Recurrent cortical connections
cause the network to sharpen its selectivity. The pat-
tern of local lateral connections is taken as isotropic,
with the spatial range of monosynaptic excitation ex-
ceeding that of inhibition. The model (i) obtains
sharpening, diversity in selectivity, and dynamics of
orientation selectivity, each in qualitative agreement
with experiment; (ii) predicts more sharpening near
orientation pinwheel singularities.

Introduction

The mammalian primary visual cortex (Area V1) marks the
first site along the “visual pathway”, (Retina — LGN
— V1 — And Beyond), where selective response is ob-
served to elementary features of visual scenes, such as ori-
entation and spatial frequency. Despite 40 years of intense
research effort, a detailed account of the neural basis for
this selectivity in V1 remains elusive. We focus on orien-
tation selectivity, the selective response of a single neuron
to some orientations of a bar or grating, and not to others.
This property of single cortical cells was first discovered by
Hubel & Wiesel [1] in 1962; it is probably important for
tasks such as edge detection and contour completion [2].
A basic question is still unanswered: to what degree, and
by what mechanisms, does cortical processing contribute to
orientation selectivity? V1 is a layered structure, with differ-
ent layers having different tuning properties and functional
architectures. Here, we focus on layer 4C« as it is the input
layer for stimulus from the LGN (magnocellular pathway).
Data illustrating examples of orientation selectivity in an in-
put layer in V1, 4C«, are shown in Fig.1 (Ringach, Hawken,
& Shapley, personal communication). Fig.1la shows sample
tuning curves for 3 simple cells in layer 4Ca, in response to
a drifting grating oriented at angle 6 (angles separated by
180° designate gratings of the same orientation drifting in

opposite directions). These are tuning curves of the steady
state firing rate averaged over many repeated periods of
drift. These curves hint at the great diversity observed in
the selectivity of 4Ca neurons. Two neurons show peaks
at their “preferred angles”, with one weakly and the other
more strongly selective, while the third neuron is weakly se-
lective for orientation but is directionally selective. Such
diversity is found in all layers, though on average neurons in
the input layers, 4C'« and 4C3, are somewhat less selective
for orientation than cells in other layers [3].
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FIG. 1. Sample orientation tuning curves from drifting grating
stimuli: (a) Experiment (3 4Ca simple cells). The response is
measured as time-averaged firing rate, and is plotted in units of
impulses/sec. Stimuli were at optimal temporal frequency for each
neuron — 2—10 Hz) and (b) Model (excitatory neurons, 8 Hz). The
model results also include the orientation selectivity obtained by
an uncoupled neuron (long- dash — the “feed-forward response”),
normalized for comparison to a peak response of 40 spikes/sec. As
shown, some of the model’s neurons may be directionally selective
(dashes), as are some 4Ca cells.

Originally it was proposed that the primary origin of the
orientation selectivity of a neuron in V1 is a “feed-forward”
convergence of several LGN neurons onto a given cortical
neuron [1]. The cortical-cooling experiments of Ferster et
al. were interpreted as providing evidence for such a feed-
forward mechanism [4]. However, note that there is no ori-
entation selectivity in the time-averaged steady state LGN
input to a cortical neuron [2,5]. This is because the av-
erage firing rate of an individual LGN cell is not selective
for orientation, and so the sum of activities of many, av-
eraged over time, is also not selective, whatever their ge-
ometry (even very elongated as in the Hubel-Wiesel model
[1]). The mechanisms in cortex underlying the observed
orientation selectivity remain unknown at present, and are
the subject of extensive investigation and debate (see [2,6]).
Cortical models have been used to show how steady state
orientation selectivity could be produced in cortex, based on
“center-surround” interactions in the orientation domain in
the cortical network [7,8]. However, these theories did not
attempt to use realistic cortical circuitry.
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FIG. 2. P(6,7) from RTC at several times 7, showing the dy-
namics and sharpening of orientation selectivity. A time series for
the stimulus is constructed by choosing a fixed wavelength sinu-
soidal standing grating (parametrized by orientation and a spatial
phase) randomly from a stimulus set. Stimuli are shown succes-
sively, each for 17 ms. The spike train of a visually responsive
neuron is recorded, and correlated against the stimulus time series.
The normalized correlation, P(6,7), is the probability that 7 ms
before a spike was produced, an image with angle 6 was presented.
The graph’s left vertical scale is probability, while the vertical scale
on the right, for the rightmost boxes only, is in units of circular vari-
ance. (a) Experiment (4Ca simple cell, 18 angles), and (b) Model
(16 angles). The rightmost boxes show CV[P(:,7)] (see Eq. (4)).
The dashed CV[P] curve in (b) is that for an uncoupled model neu-
ron, and it shows that feedforward input by itself produces only a
small reduction in circular variance in the RTC experiment.

Another kind of experiment on orientation selectivity is a
challenge for any theory of visual cortex. Through reverse
time correlation (RTC) experiments, Ringach et al. [3] ob-
tained information about the dynamical behavior of orien-
tation selectivity. A sample RTC measurement of the dy-
namics of orientation selectivity for a 4C'a neuron is shown
in Fig.2a. As in the steady state experiments, broad diver-
sity is found in RTC orientation selectivity and dynamics [3].
The stimulus used in the RTC experiments kept most of the
measured cortical cells in a persistently excited state. This
is unlike the situation in the drifting grating experiment in
which spike firing rate could be zero at non-preferred orien-
tations. And so, a second major test of a neuronal network
model is to see how well it matches the cortex’s dynamics
of orientation selectivity measured in the RTC experiments.

Here, we address these issues of orientation selectivity
through a network model of 4C'« that uses a more realis-
tic cortical architecture than has been previously studied.
The model consists of a small area (~ 1mm?) of input
layer 4C'cr, containing four “orientation hypercolumns” of
excitatory and inhibitory neurons. Convergent feed-forward
input from many LGN neurons sets up an orientation pref-
erence, laid out as pinwheel patterns, each with an orien-
tation preference singularity at its center. The intracortical
connectivity across the layer is isotropic, with axonal length-
scales for excitation exceeding those of inhibition. Through
large-scale simulation, we find that our model can achieve
good orientation selectivity for both steady-state (drifting
grating) and dynamical (RTC) stimuli, even though these
two types of stimulation place the cortex at very different
“operating points". The consequences of the cortical archi-
tecture are two-fold: First, in the neighborhood of pinwheel

centers, inhibition can be global in orientation coordinates,
yielding greater selectivity, despite being shorter-range in
cortical coordinates. Second, this correlation of selectivity
with proximity to pinwheel centers underlies an observed
diversity in our model, and suggests new physiological ex-
periments.

Materials and Methods

A Neural Model: Our model, shown schematically in
Fig.3, is a 2-dimensional layer of coupled excitatory (E)
and inhibitory (I) integrate-and-fire (I&F) neurons, 75% of
which are excitatory, and 25% inhibitory, in rough agree-
ment with anatomical data [9]. A neuron's intracellular
voltage, U'ZE(O”), is the fundamental variable. The su-

perscript j = (j1,J2) indexes the spatial location of the
neuron within the cortical layer. Internal voltage changes
are induced by conductance changes. We specify sev-
eral cellular biophysical parameters, using accepted values
[10]: the capacitance C' = 10-5Fcm~2, the leakage con-
ductance gr = 50 x 1070 1em ™2, the leakage rever-
sal potential Vg = —70mV, the excitatory reversal po-
tential Vg = O0mV, and the inhibitory reversal potential
Vi = —-80mV.
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FIG. 3. Schematic of a model layer 4Ca hypercolumn (left),
with axonal (gray circle) and dendritic (dark circle) arbor widths
indicated for excitatory (E) and inhibitory (I) cells. The cortical
neuron along the ray at angle 20 (emanating from the pinwheel cen-
ter) inherits its orientation preference based on convergent input
from a distribution of ON/OFF cells (upper right). The distribu-
tion’s orientation at angle 6 in the visual field sets the orientation
preference. In this inset, the OFF cells are indicated by filled cir-
cles. The lower right graph shows the LGN temporal kernel G.

The spike generation mechanism for an 1&F neuron is as
follows: The voltage across the cell membrane is driven up
and down by ionic currents. When the cell's voltage be-
comes more positive than the threshold v = —55mV, that
time is recorded (the “spike time"), and the cell voltage
is reset to © = Vg (rest and reset potentials are taken as
equal). Conductance changes are then induced in other neu-
rons, relative to this spike time. Neurons' voltages evolve
by the coupled system of differential equations which, after
normalization in which only time ¢ retains dimension, takes



the form:

dv? , , )
S —gud — el — Vil — g, Old — Vil , (1)
where 0 = E or I indexes Excitatory or Inhibitory neurons.
In this equation, —2/3 < v,,v7 < 1. (This normalization
sets the spiking threshold ¥ to unity, the reset voltage v to
zero, Vg = 14/3, and Vi = —2/3.)

Conductances: The time-dependent conductances (ex-
citatory g, 5 (t), and inhibitory g7, ,(t)) arise from the
LGN input, from noise to the layer, as well as from the cor-
tical network activity of the excitatory and inhibitory popu-

lations. They have the form:

grp(t) = +SEEZCLJ kZGE t—1tF),
s (t) = F9(t) +sElzbj,kZG1 E— TP,
91e(t) = +S1EZC] kZGE (t —tF),
g1:(t) = f1(t) +5nzdjkaG1t—Tl , (2
k ]
Here t¥ (TF) denotes the I'" spike-time of the k' ex-

citatory (inhibitory) neuron. The input conductances are
F(t) = gign(t;0,k, @) + f2(t), for excitation, and f9(t) for
inhibition (described below). We describe next the visual
stimuli we have studied, and the the spatial and temporal
pattern of LGN input to the cortex in the model.
Visual Stimuli: The visual stimulus is a si-
nusoidal grating with intensity pattern I(Z,t) =
Iy [1 +esinlk 7 —wt+ gi)ﬂ Here k = k(cos#,sinb),
with 6 € [—m, ) the orientation of the grating, ¢ € [0, 27)
its phase, w its drifting frequency, Iy its intensity, and €
its contrast. We use two types of stimuli: (i) a drift-
ing grating (w > 0); and (ii) flashed, randomly oriented
gratings, as used in the RTC experiments of Ringach et
al. [3], for which w = 0 and 6 € [0,7). Refreshed every
17 ms, each pattern is taken randomly and independently
from a collection of patterns with N values of the orienta-
tion {8 = kn/N,k=1,---, N} and M values of the phase
{d=k2r/M,k=1,---, M}.
LGN Response to Visual Stimuli: In response to vi-
sual stimuli, LGN neurons produce spikes which impinge
upon 4C. Visual properties of Macaque LGN neurons in the
magnocellular layers are estimated from experimental stud-
ies [11,12] as follows: LGN neurons have (i) no orientational
selectivity; (ii) a “center-surround” receptive field; (iii) a
temporal impulse response of the center mechanism which
increases to peak at approximately 40 ms, followed by a de-
layed undershoot that bottoms at approximately 60 ms; (iv)
this LGN temporal impulse response has zero integral.
Consistent with these experimental observations, our
model represents the firing rate of the n'” LGN neuron,
caused by a stimulus I(7,t), as R (t) =

{RB + /Otds /de%: G(t — s)A(|Z, — ) I(Z, s)}+, (3)

where {R}* = R,R > 0; {R}* = 0,R < 0. Here R} rep-
resents an “on-center,” and R, an “off-center”, #,, denotes
the center of the receptive field of this neuron, and Z is the
coordinate of the visual plane. To mimic (i,ii) above, A(Z)
is taken as a difference of Gaussians with parameters like
those used in other recent models [5,8]. To mimic (iii,iv)
for the magno input to 4C«, the response function G(t) ap-
proximates measured zero-integral LGN cell kernels [11,12]
(in the magno pathway).

Convergence of LGN Output into 4C: Consider a
single neuron in the input layer 4C«, and a set of LGN
neurons (call it C) whose output converges to this corti-
cal neuron. A typical spatial distribution of such On/Off
centers is shown in Fig.3 [13]. If X denotes the center of
the receptive field of this cortical neuron, the centers of the
receptive fields of the LGN neurons convergent to it are all
located near X. Experimental evidence suggests that the
total number of convergent LGN neurons in C should be
approximately 20, and in the model we use 17 [13]. The
orientation (and spatial phase) preference of each cortical
neuron is encoded in the model through the locations and
layouts of the assembly of LGN inputs. The summed LGN
input to a cortical cell is thus:

glgntokd)

> R,
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Our model does not currently incorporate in the LGN input
any mean drift in receptive field center, nor any diversity
in the arrangement of On/Off subregions. To mimic spa-
tial phase shifts associated with varying On/Off subregion
arrangements and receptive field location, we choose X ran-
domly, and independently, for each cortical neuron.

Note that there is no orientation selectivity of the LGN

input to each cortical neuron, if time-averaged input rate
is the measured response variable [2,5]. Nevertheless, as
discussed below in Results, the temporal modulation of the
LGN input is tuned and this is what confers the orientation
preference on the cortical cells in the model.
Pinwheel Centers and the Orientation Map: Opti-
cal imaging measurements [14,15] show in superficial layers
2/3, "pinwheel” patterns of orientational preference on the
cortex; neurons of like-orientation preference reside along
the same radial spoke of a pinwheel, with the preferred angle
sweeping through 180° as center of the pinwheel is encir-
cled. These pinwheels tile the cortical layer, with their cen-
ters located (statistically) near the centers of ocular domi-
nance columns, separated from each other by approximately
500um (~ the width of the ocular dominance columns).

While imaging shows these pinwheel patterns in the outer
layers, we assume that there is a correlated structure in the
LGN input to layer 4C, and build a pinwheel structure into
the model by tying the preferred orientation angle of a given



4C neuron to its location in the layer with respect to the
pinwheel pattern. In the model, we tile the layer period-
ically with pinwheels. Four pinwheels, chosen with alter-
nating “handedness”, are placed upon a square, and then
extended periodically. This periodic configuration permits
rapid evaluation of cortical interactions through Fast Fourier
Transforms.

Random Inputs: The terms f%(t) and f?(¢) in Eq. 2 are
random inputs, excitatory and inhibitory respectively, that
represent input to layer 4C neurons from layer 6 neurons and
other sources of excitation or inhibition. These stochastic
terms were chosen so that the spike firing statistics of neu-
rons in the model would resemble those seen in V1 neurons
[16].

Cortico-Cortical Coupling: The kernels (a,b,c, d)g,
in Eq.2, represent the strength of spatial coupling be-
tween neurons. Their length scales are based on neu-
roanatomy. While there is evidence that long range con-
nections (> 1000um) can be anisotropic and orientation
selective, the local dense connections (< 500um) appear
spatially isotropic [17]. Here we assume this local isotropy,
taking the density of connections as Gaussians:

qua/ _ (h2/7TL(2-m/) exp (_|jh|2/ng/),

where h denotes a spatial discretization. We use anatomical
data to estimate the coupling lengths L,,/. This includes
population stainings (orthograde and retrograde) [18], and
individual neuron stainings [18-20]. These anatomical
measurements classify distinct types of neurons and mea-
sure the spatial extent (both local and long range) of
their axonal and dendritic arbors. From these measure-
ments we estimate the mean 4C« local coupling lengths:
rP a1 = 50um, rg ~ 200um,r}4 ~ 100pm, where
rg (or 1),r§ (or 1) denotes the mean radii of the excitatory
(or inhibitory) dendritic and axonal arbors. The interaction
V2?2 + (52,
of Lpgp ~ Lig ~ 200um, Lgr ~ Ljr ~ 100pum. Thus,
the longest space scales arise from the axonal arbors of the
excitatory (not inhibitory) neurons.

The temporal kernels G, (t) model the time course of
synaptic conductance changes in response to arriving spikes
from the other neurons. The cortical temporal kernels are
of the form

radii are then given naturally by L,, =

=

9]
G, = cy % exp (=t/7,) H(t), o = E, I,
[eg

where H (t) is a unit step function. The time constants are
based on experimental observations ( [10], and A. Reyes,
private communication). The time constant for excitation
(e = 3 ms) is shorter than that for inhibition (71 = 5 ms).
Based on recent experimental findings (B. Connors, private
communication), we also add a second, longer time-course
of inhibition (~ 30 ms in duration).

Synaptic Weights: In Eq.2 all cortical kernels have been
normalized to have unit integral; hence, the parameters

See,Ser,Sie,and Syr label the strength of interaction,
and represent synaptic strengths. They are treated as ad-
justable parameters in the model. In the model reported
here, the strength vector (Sgg, Sgr, Sre, Srr) was set to
be (0.8, 7.6, 1.5, 7.6). The effect of this choice of synap-
tic weights can be estimated most directly by observing
the synaptic conductances of model neurons and compar-
ing them to the leakage conductance (set to 50s1), plus
the (random) background conductances, with peak values
of 200s~ 1. In these units, the peak LGN conductance dur-
ing stimulation reaches values of 180s~!; the peak cortico-
cortical excitatory conductance reaches 60s~'; the peak in-
hibitory conductance reaches values of 6505~ . This choice
of synaptic strengths made the model stable, and filled with
orientation-tuned simple cells. It also led to high membrane
conductances during stimulation.

Results

Orientation Selectivity: Fig.1b shows orientation tun-
ing curves for sample neurons from the model, in response
to a grating stimulus drifting at 8 Hz. Also shown is the
“feed-forward” tuning curve of an uncoupled neuron, ob-
tained by shutting off all cortical interactions. These tuning
curves from the model should be compared with those from
experiment, shown in Fig.la.

The response of a neuron uncoupled from the network
(also in Fig.1b) is very weakly selective for orientation. We
term this the “feed-forward” case because the visual driven
input to the cortical cell is only from the LGN. While the
time-averaged input from a sum of LGN cells is untuned
for orientation [2,5], the observed “feed-forward” selectivity
arises from the cortical cell’s leaky integration of the input’s
broadly tuned temporal modulation, background noise, and
spike thresholding. This only weakly sharpens the cortical
response (see also [21]).

In the present model there is no diversity in ‘“feed-
forward” responses. While orientation preference changes
from neuron to neuron, forming the pinwheel spatial pat-
terns, the selectivity in the absence of cortical coupling is
identical for every neuron.

In the presence of cortical coupling, the tuning curves in
Fig.1b show that significant sharpening and diversity occurs
in the model. This takes place with recurrent connections
whose spatial arbor sizes are consistent with anatomical ob-
servations [22,18,20,23,19] — with the axons of excitatory
neurons possessing the largest local arbors.

The diversity in orientation selectivity emerges from the
cortico-cortical interactions, and its presence is consistent
with experimental data. This diversity is quantified in Fig.4.
There, the degree of selectivity is measured through the
circular variance of the (time-averaged) firing rate m;(6)
of the 5" neuron, as in [21]:

[ m(8) exp (2i6)d6
J m(6)do

CVim]|=1- (4)

Sharply tuned neurons have CVs near 0, while broadly tuned



neurons have CVs near 1. Fig.4 shows these data for the
model (b), and for a population of 42 neurons in 4C« avail-
able from experiment (a). In the model, the CV of neurons
in the absence of cortical coupling is 0.9 (thick dashed line
in (b)); Thus, due solely to cortical interactions, the distri-
bution of CVs over the population shows considerable di-
versity. The model's distribution of CV is not as diverse as
in experiment, but we found that adding variability in the
pattern of spatial convergence of the LGN input could pro-
duce more broadening of the CV histogram. The histogram
for the inhibitory population shows also that the model's
inhibitory neurons are on average more broadly tuned than
the excitatory.

(a) Experiment (b) Model
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FIG. 4. Histogram (fraction of total population) of tuning
curve CVs. (a): Experiment, 42 4Co neurons (presumably excita-
tory). (b): Model, showing both excitatory (solid) and inhibitory
(dashed) neurons. (Neurons with low peak firing rates are dis-
carded.) Also shown is the CV of the feed-forward response (thick
dashed vertical line).

FIG. 5. Spatial distribution of response properties across the
model’s four hypercolumns. (The upper left quadrant is that hy-
percolumn depicted in Fig.3.) The left two hypercolumns show
time-averaged firing rate of the excitatory population, responding
to a grating drifting at angle 6 = 45° (averaged over 50 cycles). The
lines emanating from pinwheel centers label orientation columns at
0° (green), 45° (red), 90° (yellow), 135° (blue). The right two
hypercolumns show the spatial distribution of circular variance,
Spatial Distribution of Selectivity: The model shows
intriguing spatial distributions of firing and selectivity, rel-
ative to the location of the neurons within the pinwheel
pattern. Fig.5 shows a color coded 2-d representation of
average firing rate in response to a drifting grating, and the
circular variance C'V[m;], of excitatory neurons. The firing
rate distribution shows higher activity near the pinwheel cen-

ters. The spatial distribution of CV shows typically higher
orientation selectivity near the pinwheel centers. While this
accounts for a large part of the observed diversity, there are
other well tuned neurons scattered across the cortex. Simi-
lar observations hold for the inhibitory neuron population.
Reverse Time Correlations: Fig.2b shows RTC data
for a model neuron. The figure shows P (¢, 7), the probabil-
ity that 7 time-units before a spike is fired, visual stimulation
at angle 0 occurred. The identical parameters are used in
these RTC simulations as in the drifting grating simulations
described above. There is qualitative agreement between
the model and experiment — in particular, a simple response
with a single maximum at a preferred angle 0,,, which grows
and then relaxes. Also shown is the CV[P], which captures
the temporal course of selectivity — a latency, followed by
sharpening, then relaxation. Again experiment and model
are roughly consistent, though this particular model neuron
shows a second, lesser peak in CV (sometimes observed in
experiment). Minimum CVs for RTC experiments in the 0.6
range are observed in the model as in the cortex .

Included in Fig.2b is CV[P] for an uncoupled model neu-
ron, which shows the weak dynamical selectivity of “feed-
forward” response (cf. [21]). The circular variance for this
neuron is near 1, meaning it is unselective for orientation.
This implies that the orientation selectivity seen in the RTC
simulations is a consequence of cortico-cortical interactions.

Discussion

This paper describes the performance of a neuronal network
model of the input layer 4Ca of Macaque V1. This model
differs from others in the literature in several ways. (i) It is
designed largely from data for the anatomy and physiology
of layer 4Ca of Macaque (i.e. length-scales and patterning
of connectivity, and pinwheel centers). (ii) It uses corti-
cal coordinates rather than idealized coordinates as in “ring
models” [7,21] or “near-ring models” [8], whose coordinate
labels are angles of orientation preference, rather than cor-
tical locations within the layer. (iii) It has only short range
local inhibition, which is consistent with anatomical data,
rather than an inhibition which is explicitly long range in ori-
entation preference, as is standard for many models [24,7,8].
(iv) It uses voltages, driven by synaptic conductances, as the
fundamental variables, rather than activities or mean firing
rates [25,7], or a probabilistic “population-density” repre-
sentation [26,24]. (v) lts local coupling architecture is not
long-range, anisotropic, or “orientation specific’ [27] — it
is local and isotropic. (vi) As a large-scale network model,
it necessarily consists of point neurons rather than multi-
compartmental models [28-30]. The model most similar
to ours, in attempting to account for orientation selectivity
with a realistic cortical network, is due to Troyer et al. [5].
The main difference between their model and ours lies in
the spatial pattern of cortico-cortical connectivity. Theirs is
phase and orientation specific, while ours is isotropic.

Our neuronal network model obtains agreement with
physiological experiments with regard to: (i) sharpening of



orientation selectivity, (ii) diversity in orientation selectivity,
and (iii) dynamical characteristics of orientation selectivity.
Requiring that the model account for physiological exper-
iments, while also following the neuroanatomy and neuro-
physiology of cortical cells, places demanding performance
criteria on the model. For instance, requiring sharpening of
orientation selectivity with short range monosynaptic inhi-
bition, and agreement with reverse time correlation exper-
iments, severely constrains the values of the free parame-
ters in the model. In most models of orientation selectivity,
sharpening is achieved by a direct long-range monosynap-
tic inhibition, usually in an effective angle coordinate. In
Macaque 4Ca, a long-range inhibition in cortical coordi-
nates is not supported by anatomical evidence, though as
our model suggests, a long-range inhibition in angle may
arise near pinwheel centers.

Orientation selectivity, diversity, and pinwheels:
An intriguing prediction of the model is the spatial distri-
bution of CV in the steady state experiments (with drifting
gratings as stimuli). The model shows smaller CVs near
pinwheel centers than away (Fig.5). Analyzing this char-
acteristic reveals how the model achieves its selectivity and
diversity. Fig.6 shows the orientation tuning curves for fir-
ing rates, and for intracellular currents for two representative
excitatory neurons, one near and one far from the pinwheel
center. The Far neuron’s tuning curve has a high CV be-
cause of the relatively high response at angles orthogonal
to its preferred orientation. The Near neuron’s orientation
tuning curve has a lower CV because its response drops to
near zero at angles orthogonal to preferred, and its peak
response is higher. In the model, the orientation selectivity
is initiated by the temporal modulation of the LGN current
about its mean, and the differences in selectivity between
these two neurons is accounted for by the differences in the
mean inhibition as a function of orientation.

First, consider the tuning curve for total current. The
mean current (solid line), and the mean £1.5 standard de-
viations (the two dotted lines), are plotted vs. orientation 6.
The Near, more selective, neuron’'s mean + 1.5 std. devi-
ation exceeds the threshold for spike firing (long-dash line)
over a much narrower range of angles than does the Far neu-
ron’s. This is the underlying cause of the sharper selectivity.
But why is the total current of the near neuron more tuned?
As is observed from the separation of the std. deviations
in the two graphs (Near and Far), the modulation of the
total current (from LGN, and cortico-cortical interactions)
is approximately the same for the two neurons. Therefore,
the differences in selectivity must come from differences in
tuning of the mean current.

The different patterns of mean inhibitory input across 6
is the primary reason for the diversity of orientation selectiv-
ity, and for sharpening. This is seen in the right hand panel
of Fig.6. The Near neuron receives mean inhibition that is
essentially independent of #, while the Far neuron receives
inhibition that depends on 6 and is maximal at its preferred
orientation. The reason underlying this difference is that in-

hibitory inputs arrive solely from other cortical neurons. For
the neuron near the pinwheel center, the interaction length
for inhibition (L;; and Lg;) extends over all orientations;
Thus, its sharpening is achieved by a global inhibition in
orientation. This is not true for the Far neuron. lIts in-
hibitory inputs are from cortical neurons whose orientation
preference is nearly the same as its own. In this case inhi-
bition is not global in orientation, and thus less effective in
sharpening the excitation’s broad selectivity.

Total Membrane Inhibitory
Current Current

Firing Rate

| Near,

8 (degrees) 8 (degrees)

FIG. 6. Differences underlying selectivity for an excitatory neu-
ron near (upper figures), and another far (lower figures) from a
pinwheel center. The left boxes show the average firing rate as a
function of #. The middle boxes show the time-averaged current
at threshold (center curve), plus and minus 1.5 standard devia-
tions (dashed curves), as a function of 6. The right boxes show the
time-averaged inhibitory network contributions, plus and minus 1.5
standard deviations, to this current.

The experiments of Maldonado et al. [15] suggest that
the degree of selectivity is not strongly correlated to dis-
tance from a pinwheel center. However, their data are from
cat cortex, and they use half-widths instead of circular vari-
ance to characterize their orientation tuning curves. Most
importantly, our results are specific for the input layer 4Cc,
while the results of [15] are not correlated directly with the
laminar structure. This makes it difficult to compare their
experimental results with the model's predictions. Future
experiments on the spatial distribution of CV in Macaque
V1 would provide a strong test of our model.

High Conductances: In our model, cortico-cortical in-
teractions are dominated by inhibition, and the membrane
conductances are high during stimulation, mainly because of
the inhibition. This high conductance regime follows from
two constraints the model must satisfy if it is to simulate
the biological cortex adequately — both (i) orientation selec-
tivity and (ii) peak firing rates must agree with physiological
observations. From the results of a series of numerical ex-
periments, we have observed that these two constraints are
met as follows: To obtain adequate orientation selectivity, a
significant level of inhibition is required. To obtain adequate
firing rates, the excitatory conductance must overcome both
this inhibition and the leakage conductance. In addition,
the excitatory and inhibitory currents must be roughly bal-
anced, for the voltage not to be driven above threshold all
the time, or to dwell near rest all the time. Such a bal-
ance of currents seems consistent with experimental data



[31]. This balance of currents immediately implies that the
inhibitory conductance must be higher than the excitatory
(9eVE ~ g1lViIl = g1 =~ (Ve/|Vi])gr > gr). This
high (inhibitory) conductance regime at which the model
operates is also supported by recent experiments: Large in-
hibitory conductances, evoked by visual stimuli, have been
observed experimentally in visual cortical cells [32,33].
Dynamics: In the RTC simulations, orientation selectivity
is observed, and is qualitatively consistent with that mea-
sured in 4C« cells [3]. By design, the RTC experiments [3]
caused most cortical cells to be persistently excited above
threshold. A selectivity mechanism based on the sharpening
of broad “feed-forward” inputs by a fized threshold would
likely give much poorer selectivity in the RTC experiments
than in the steady-state experiments (as seen in the re-
sponses of the uncoupled model neuron; See Figs.1b &2b).
But this is not what is observed, neither in experiment nor
in the model network. In the model network, the orientation
selectivity occurs through a dynamical thresholding that is
set through an interplay between LGN excitation, cortico-
cortical excitation, and cortico-cortical inhibition. Also, in
the RTC simulations the model gives a correlation between
the degree of selectivity and the proximity to pinwheel cen-
ters — similar to that seen in the steady state simulations.
This is another prediction of the model that could be tested
experimentally.

Authorship is listed alphabetically to acknowledge equal
contribution. The authors acknowledge grant support from
the Sloan Foundation for the NYU Theoretical Neurobiol-
ogy Program, NIH grant 2R01-EY01472, and NSF grants
DMS9600128, IBN9634368, and DMS9404554. We thank
M. Hawken and D. Ringach for sharing with us their un-
published experimental data (appearing in Figs.1, 2, and4),
and for helpful conversations. We thank the referees, and L.
Borg-Graham, L. Sirovich, and H. Sompolinsky for careful
readings of the manuscript.

[1] D. Hubel & T. Wiesel (1962) J. Physiol (Lond) 160, 106-
154.

[2] H. Sompolinsky & R. Shapley (1997) Current Opinion in
Neurobiology 7, 514-522.

[3] D. Ringach, M. Hawken & R. Shapley (1997) Nature 387,
281-284.

[4] D. Ferster, S. Chung & H. Wheat (1996) Nature 380,
249-252.

[5] T. Troyer, A. Krukowski, N. Priebe & K. Miller (1998)
J. Neurosci. 18, 5908-5927.

[6] H. Sato, N. Katsuyama, H. Tamura, Y. Hata & T.
Tsumoto (1996) J. Physiol. 494, 757-771.

[7] R. Ben Yishai, R. Bar Or & H. Sompolinsky (1998)
Proc. Nat. Acad. Sci. USA 92, 3844-3848, 1995; Also,
D. Hansel & H. Sompolinsky (1998) in Methods in Com-
putational Neuroscience, MIT Press, Boston.

[8] D. Somers, S. Nelson & M. Sur (1995) J. Neurosci. 15,
5448-5465.

[9] C. Beaulieu, Z. Kisvarday, P. Somogyi, M. Cynader & A.
Cowey (1992) Cerebral Cortex 2, 295-309.

[10] C. Koch, Biophysics of Computation, Oxford Univ. Press,
Oxford 1999.

[11] C. Gielen, J. van Gisbargen & A. Ventric (1981) Bio.
Cyber. 40, 157.

[12] E. Benardete, PhD thesis (1994) Rockefeller University.

[13] R.C. Reid & J.-M. Alonso, J.-M. (1995) Nature 378, 281—
284.

[14] T. Bonhoeffer & A. Grinvald (1991) Nature 353, 429-
431. G. Blasdel (1992) J. Neurosci. 12, 3115-3138 and
3139-3161.

[15] P. Maldonado, I. Godecke, C. Gray & T. Bonhoeffer
(1997) Science 276, 1551-1555.

[16] F. Mechler, PhD thesis (1997) New York University.

[17] T. Yoshioka, G. Blasdel, J. Levitt & J. Lund (1996)
Cereb. Cortex 6, 297-310.

[18] D. Fitzpatrick, J. Lund & G. Blasdel (1985) J. Neurosci.
5, 3329-3349.

[19] E. Callaway & A. Wiser (1996) Vis. Neurosci. 13, 907-
922. A. Wiser & E. Callaway (1996) J. Neurosci. 16,
2724-2739. E. Callaway (1998) J. Neurosci. 18, 105-1527.

[20] J. Lund (1987) J. Compar. Neurology 257, 60-92; J. Lund
& T. Yoshioka (1991) J. of Compar. Neurology 311 234-
258; J. Lund & C. Wu (1997) J. of Compar. Neurology
384, 109-126.

[21] M. Pugh, D. Ringach, R. Shapley & M. Shelley (1999) J.
Comp. Neurosci. 8, 143-159.

[22] G. Blasdel, J. Lund & D. Fitzpatrick (1985) J. Neurosci.
5, 3350-3369.

[23] J. Lund, M. Hawken & A. Parker (1988) J. of Compar.
Neurology 276, 1-29.

[24] D. Nykamp & D. Tranchina (2000) J. Comp. Neurosci.
8, 19-50.

[25] H. Wilson & J. Cowan (1973) Kybernetik 13, 55-80.

[26] B. Knight, D. Manin, & L. Sirovich, in Symposium on
Robotics and Cybernetics, Cite Scientifique, Lille, France,
1996. And A. Omurtag, B. Knight, & L. Sirovich (2000)
J. Comp. Neuro. 8, 51-63.

[27] P. Adorjan, J. Levitt, J. Lund, & K. Obermayer (1999)
Vis. Neurosci. 16, 303-318.

[28] K. Martin (1988) J. Ezp. Physiol. 73, 637-702.

[29] R. Douglas, C. Koch, M. Mahowald, K. Martin & H.
Suarez (1995) Science 269, 981-985.

[30] F. Worgotter & C. Koch (1991) J. Neurosci. 11, 1959-
1979.

[31] K. Stratford, K. TarczyHornoch, K. Martin, N. Bannister
and J. Jack (1996) Nature 382, 258-261.

[32] L. Borg-Graham, C. Monier & Y. Fregnac (1998) Nature
393, 369-373.

[33] J. Hirsch, J.-M. Alonso, R. Reid & L. Martinez (1998) J.
Neurosci. 18, 9517-9528.



