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To address computational “scale-up” issues in modeling large
regions of the cortex, many coarse-graining procedures have been
invoked to obtain effective descriptions of neuronal network
dynamics. However, because of local averaging in space and time,
these methods do not contain detailed spike information and, thus,
cannot be used to investigate, e.g., cortical mechanisms that are
encoded through detailed spike-timing statistics. To retain high-
order statistical information of spikes, we develop a hybrid theo-
retical framework that embeds a subnetwork of point neurons
within, and fully interacting with, a coarse-grained network of
dynamical background. We use a newly developed kinetic theory
for the description of the coarse-grained background, in combina-
tion with a Poisson spike reconstruction procedure to ensure that
our method applies to the fluctuation-driven regime as well as to
the mean-driven regime. This embedded-network approach is
verified to be dynamically accurate and numerically efficient. As an
example, we use this embedded representation to construct
"reverse-time correlations” as spiked-triggered averages in a ring
model of orientation-tuning dynamics.

M any levels of neuronal representations have been devel-
oped in modeling regions of the cortex. Good represen-
tations can provide powerful theoretical insights into the work-
ings of the brain and increase significantly our understanding of
fundamental cortical mechanisms. However, in computational
modeling efforts one immediately confronts crucial issues of
“scale-up” to model sufficiently large regions of the cortex; for
example, to investigate real-world perception and optical illu-
sions in visual cortex. These scale-up issues have been addressed
through a hierarchy of reduction and “coarse-graining” steps:
simplifying multicompartment neuron models to fewer compart-
ment models, replacing point neuron representations with more
coarse-grained (CG) representations that deal only with spatial-
ly/temporally local-averaged quantities, such as mean firing rate
(1-3) and population density representations (4-12). Because of
local time averaging, detailed information about spikes, such as
interspike interval (ISI) distributions, is lost in these CG ap-
proaches, including the kinetic theory (12) (which still invokes
CG in time despite its success in describing fluctuation effects).
Thus, cortical mechanisms that are encoded through detailed
spike-timing statistical patterns cannot be investigated with the
present CG techniques.

Here, we introduce a hybrid framework, which retains detailed,
high-order statistical information of spikes, yet is numerically
efficient and effective for scale-up. The hybridization is accom-
plished by embedding a subnetwork of point neurons within a
CG substrate or background network. This approach is designed
to address situations where a biologically distinct subnetwork of
neurons interacts with the remaining neuronal population of the
substrate. For example, local interactions between point neurons
might be represented as a background by local averages in space
and time, whereas sparse (but sufficiently strong) long-range
interactions would be represented by a subnetwork of the
embedded point neurons. Alternatively, a special class of cells
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might have particularly strong sparse connections, such as those
connecting different cortical layers. Or neurons within special
cortical regions, such as near orientation pinwheel centers where
interaction strengths change so rapidly over short cortical dis-
tances that local spatial averaging is not valid, might necessitate
the use of embedded neurons. In our approach, we ensure that
these two networks (the CG background and the embedded
point neurons) can fully interact, with each influencing the other.
Because they are fully interacting with the CG background,
conceptually, these embedded point neurons differ from the
notion of “test particles” familiar in physics. Naturally, if the
couplings of the embedded network are very sparse and weak,
then the embedded neurons reduce to “test neurons” for ex-
tracting information about the background.

In the hybrid approach, the level of detail required in modeling
specific neuronal phenomena dictates the specification of par-
ticular representations for each of the two networks. For exam-
ple, for the embedded point neurons, we might invoke an
integrate-and-fire (I&F) model, or a more realistic one, such as
a Hodgkin—-Huxley model. For the CG background, we could use
a dynamics of mean firing rates or population density. In this
work, we use a leaky I&F description for the embedded point
neurons; for the CG background, the kinetic theory (12) that we
recently developed to capture fluctuation-dominated network
dynamics. We choose this kinetic representation specifically to
emphasize that the embedded network method has wide appli-
cability, even for regimes which are driven by fluctuations.

In what follows, this embedded representation is developed
and its performance is evaluated; its accuracy, efficiency, and
numerical effectiveness are established through simulations in
comparison with the original I&F networks. We also contrast the
kinetic representation with simpler “mean firing rate” repre-
sentations of the background, demonstrating that, in fluctuation-
driven regimes, the kinetic theory provides a far more accurate
description of the original dynamics than the mean firing rate.
We also use the embedded representation to simulate “reverse
time correlation” (RTC) experiments, which, as spike triggered
averages, provide one example in which the retention of spike-
timing information is natural. Finally, we discuss future gener-
alizations and possible applications.

Methods

We first coarse-grain a layer of cortex into many, small CG
patches as described in refs. 2 and 12. As a specific example, we
take one small CG patch from our large-scale numerical model
(13-15) of the input layer 4Ca of primary visual cortex (V1) of
the macaque monkey, which consists of 75% excitatory and 25%
inhibitory cells of both simple and complex types, represented as

Abbreviations: CG, coarse-grained; ISl, interspike interval; I&F, integrate-and-fire; RTC,
reverse time correlation; PSR, Poisson spike reconstruction.
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I&F point neurons. In ref. 12 we described an asymptotic
reduction of this large-scale point-neuron network to a CG
kinetic representation that is well suited for scale-up. We showed
that this kinetic theory is dynamically accurate and numerically
efficient, even when the original point-neuron network is fluc-
tuation-dominant. However, the coarse-graining procedure in
the derivation of the kinetic theory includes a local average over
time, thus removing detailed spike-timing information. Here, to
regain this spike information, we take the hybrid approach,
identifying a distinguished subnetwork of point neurons that will
be retained and replacing the other neurons with a CG kinetic
description.

Now, we turn to the description of the essential steps used in
this hybridization procedure. Partition the original network into
two subpopulations, a “minority” population comprising the
distinguished subnetwork of embedded neurons and a “major-
ity”” population that is to be coarse-grained and constitutes a CG
background patch. The ith neuron in this majority population
satisfies the I&F dynamics,
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together with the spike to-reset dynamics. Here, n" describes
the external drive, £} describes the cortico- cortrcal couplings
among neurons in the CG background, and vy, describes the
feedback from the remaining, embedded neurons. A, A" = E, [
label the excitation and inhibition; 7, o, and o; denote the

membrane, excitatory, and inhibitory timescales, respectively; 1

is the membrane potential, G and GM are excitatory and
inhibitory conductance, respectively, Vg, Vg, and V; are the
resting, excitatory, and 1nh1b1t0ry reversal potentlals respec-
tively. The external 1nput mF = BEfeZ,8(t — TEM) uses a
Poisson splke train {75/} with strength franda prescribed rate
voe(t). a = S, C, labels simple and complex cells, respectively.
Here, simple and complex cells are modeled by the following
network architecture: 5 = 1, £ = 0, i.e. , simple cells are driven
externally with excitatory inputs in addmon to their inputs from
other cells, whereas complex cells are not driven externally and
receive inputs only from other cortical cells."” In our model, for
the sake of presentation, half of the neurons are s1mple the other
half are complex, unless otherwise stated. v\, are the inputs
(feedback) to the neuron of type (A, «) in the background from
the neurons in the embedded subnetwork, which is symbolized
by D.

Next, we replace these “background neurons” of Eq. 1 with a
CG kinetic representation. As described in ref. 12, the CG
kinetic theory studies the evolution of the probab111ty dens1ty
funCthn poz(v gE) 8 t) =E [(1/N )2 l{S[V - ozl(t)] [
GE(1)]8[gr — GA(1)]}], where the expectation [ is taken over
all realizations of i incoming Poisson splke trains {T5*}, and over
possible random initial conditions. N is the number of neurons
in the background population of (A, a)-type. Define the marginal
and conditional moments:

TNote that, in this article, we merely use the terms “simple” and “complex” to refer to this
particular network architecture. Neurons in the visual cortex are classified (16) “‘simple’ or
“complex,” with simple cells responding to visual stimulation in an essentially linear
fashion (for example, responding to sinusoidally modulated standing gratings at the
fundamental frequency, with the magnitude of response sensitive to the spatial phase of
the grating pattern), and with complex cells that respond nonlinearly (with a significant
second harmonic) in a phase-insensitive manner. See refs. 14 and 15 for a model of simple
and complex cells which captures these physiological features.
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where ph(ge, gilv; t) is the conditional probability density
function, i.e., pa(ve, 8&» &5 1) = Palge, &ilvs 1) pa(v; 1). Upon
closure assumptions (12), our CG kinetic theory of the dynamics
(1) reduces to closed equations for p)(v; £), ua=(v; £), and ' (v; 1):

dipa = 0L, wdE, udhpdt, [2a]
O_AEZ
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where v, () is the (temporally modulated) rate for the external
Poisson spike train for A’-population, and m(¢) is the average
population firing rate per neuron of (A, a)-type. mA(¢) captures
the feedback from the embedded point neurons (see Supporting
Text, which is published on the PNAS web site). N7, is the total
number of embedded neurons of (A, «)-type in the subnetwork.
(Note that all the symbols with a tilde stand for the correspond-
ing variables for the subnetwork of embedded point neurons.)
%" denotes the cortico-cortical synaptic connection strength
from A’-population to A-population of a-cell type. §M describes
the coupling strength from the embedded subnetwork of A'-
population to the A-population in the background. The stochas-
tic nature of synaptic connection (17) is modeled by a Bernoulli
random variable with release probability p (or synaptic failure
probability 1 — p). (For details, see Supporting Text.) These
kinetic equations are posed for V; = v = V7, under two-point
boundary conditions in v, which are derived from the fact that
the total flux of neurons across firing threshold /7 is equal to the
total flux at reset Vg (12), together with vanishing flux atv = V.

The dynamics of the remaining, i.e., the embedded, neurons is
now described by
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where 7% and & describe the external drive to the embedded

neurons and their cortico-cortical couplings, respectively, and
Yabs = Shbp o S par8(t — thH) describes the feedback from the
CG populations to the embedded neurons (Supporting Text). In-
stead of using merely the average contribution to this feedback as
described by the mean rate pNyni(f), we invoke the Poisson
assumption and reconstruct stochastic spiking times {#*} and {#'*}
by using the total population rates pN%m® (¢) and pN’ym’ () as the
means for these Poisson spike trains, to capture spike fluctua-
tions in our hybrid approach. Note that this Poisson spike
reconstruction (PSR) automatically accounts for the spike fluc-
tuation in the input via possibly sparse connections from the
background, even if the number of neurons in the background is
very large. We will demonstrate the significance of this PSR
below.

Egs. 2 and 4 constitute a network of point neurons (Eq. 4)
embedded within, and fully interacting with, a dynamical CG
background represented by kinetic theory (Eq. 2). The compu-
tation effort of this network involves only the simulation of a few
embedded I&F neurons plus three (1 + 1)-D partial differential
equations for simple and complex cells in the CG background.
For statistical information, this approach allows us to drastically
reduce computational cost otherwise needed in the simulation of
the original, full I&F network (12) while retaining spike-timing
information within the CG model.

Results

We have verified our hybrid approach by comparing the em-
bedded network dynamics with the original full I&F network
with the same underlying network architecture and parameters.
First, we addressed accuracy and present an excellent compar-
ison for systems in which different parts of the total network are
replaced by the kinetic theory description.

Fig. 1 shows raster plots (spike times for each neuron) for five
stimulus periods for a single CG patch containing 400 neurons.
The raster plot for the full network of I&F neurons is shown in
Fig. 1a, with the results for three embedded networks shown in
Fig. 1 b-d. In these embedded networks, the eliminated point
neurons are replaced by the kinetic theory CG background (Eq.
2). Shown in Fig. 1 b—d are the spike rasters for the remaining,
i.e., embedded I&F neurons, for comparison with the same
neurons in the full network (Fig. 1a). In Fig. 1 b and c,
respectively, half complex (simple) excitatory cells are described
by the kinetic theory, whereas in Fig. 1d, half complex and half
simple cells, again all excitatory, are described by the kinetic
theory. Even in this case, the firing patterns of the embedded
neurons (Fig. 1d) agree well with the full I&F network (Fig. 1a).

The networks shown in Fig. 1 are operating in a fluctuation-
dominant regime (12). This regime can be a natural operating
point for cortical networks (2, 18-20), whether there are external
stimuli or not. The kinetic theory gives a valid, effective reduced
description of such situations (12). Fig. 2 accentuates this point
by comparing results for the same full network of 400 neurons
as in Fig. 1, with those of the CG background represented by a
CG mean firing-rate representation, mA(t), replacing kinetic
theory. This mean firing-rate background is obtained by solving
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Fig. 1. Comparisons of raster plots of firing dynamics of the original I1&F
network, with networks with different components replaced by the kinetic
theory description, for a single CG patch containing 400 neurons, 200 of which
are simple (150 excitatory and 50 inhibitory) and 200 complex™ (150 excitatory
and 50 inhibitory) with network connection probability p = 0.25. (The model
networks in all figures always have 75% excitatory neurons and 25% inhibi-
tory neurons.) External drive is modeled by Poisson-spike trains with the rate
froe(t) = 20. X (1 + 0.5sin(2#f,t)) with f, = 10Hzand f = 0.01, five stimulus
periods are shown. Network parameters g =5ms, oy=10ms, Vg = —70mV,
Vr = =55mV, Vg = 0mV, V, = —80 mV (the same for all figures
throughout) and Ss = (S5, SE, S, sy = (0.2,0.4, 0.2, 0.4), and S¢ = (0.2, 0.4,
0.2, 0.4). [The order convention of (SEE, SE/, S, Sy will be used throughout.]
Throughout, neurons indexed from 1 to 50 are simple excitatory, and neurons
indexed from 51 to 100 are complex excitatory (inhibitory cells not shown). (a)
The full network of I&F neurons. (b) Embedded networks with half of the
complex cells coarse-grained. (c) Embedded network with half of the simple
cells coarse-grained. (d) The embedded network with half of the simple and
half of the complex cells coarse-grained. All CG populations are described by
the kinetic theory (Eq. 2) with PSR (see text).

A

log|1 — UA({mA})|

mi(t) = for U < 1;

m(t) = 0, otherwise, [5]

for \, \' = E, I, a = S, C, where )= 7711 + ghf + gy,
Us(lmiy) = (Vr = V)/(V3" = Vi), and V3" =
(T2 Y (Vg + Ve + gX'V;), where b are defined in Eq. 3a.
Eq. 5 can be derived (2) from the kinetic theory (Eq. 2) by taking
the limit N — o, and f), — 0, fuw, finite). Fig. 2 b-d clearly
display the inaccuracy of the firing patterns of the remaining
embedded neurons when compared with the same neurons in the
full I&F network (Fig. 2a). In particular, note the complete
failure of this mean firing-rate embedding (Fig. 2 b—d) to capture
the firing of the complex cells in this fluctuation-driven case,
whereas the kinetic theory embedding provides a faithful rep-
resentation of the firing of these complex cells as shown in Fig.
1. Fig. 3 further corroborates this point. Shown are dynamic
firing-rate curves for four representations in comparison with
the full I&F network simulations of only simple cells. As clearly
shown in Fig. 3, either purely mean-rate representation (as in the
approach of ref. 11), or the hybrid approach using mean-rate only
for the CG background, does not yield a quantitatively accurate
description. We note that results, as shown in Figs. 1-3, can also
be viewed as the validation of assumptions used in our CG
kinetic theory. We will use only kinetic theory (Eq. 2) below to
describe the CG background, instead of Eq. 5.

Our hybrid approach contains a distinct step of capturing the
effects of fluctuations in the feedback to the embedded network

Cai et al.
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Fig. 2. Comparisons of raster plots of firing dynamics of the original I&F
network with different components of the total network coarse-grained by
the mean firing-rate description (Eq. 5), for a single CG patch with the same
network architecture and parameters as in Fig. 1. Throughout, neurons in-
dexed from 1 to 50 are simple excitatory, and neurons indexed from 51 to 100
are complex excitatory (inhibitory cells not shown). (a) The full network of I&F
neurons. (b) Embedded networks with half of the complex cells coarse-
grained. (c¢) Embedded network with half of the simple cells coarse-grained.
(d) The embedded network with half of the simple and half of the complex
cells coarse-grained. All coarse-grained populations are described by Eq. 5,
rather than by kinetic theory (Eq. 2).

from the CG background, which is accomplished by the Poisson-
spike reconstruction as described above. Here, we contrast this
step to a feedback of only the mean rate computed using the
general kinetic theory (Eq. 2) (not Eq. 5!) without the PSR; i.e.,
YA g is replaced by SA) s So pNAm2.(t) in Eq. 4b. One might
believe that a coupling of the kinetic theory to embedded-point
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Fig. 3. Dynamic firing-rate curves for excitatory cells, for four representa-
tions in comparison with the full 400 I&F simple cell network simulations (thick
solid line) with network connection probability p = 0.25. (i) All excitatory and
inhibitory cells are coarse-grained using our kinetic theory (Eq. 2) (thin solid
line). (ii) All excitatory and inhibitory cells are coarse-grained using the mean
firing-rate representation (Eq. 5) (dotted line). (iii) All inhibitory cells are
coarse-grained with the kinetic theory and the excitatory cells are modeled as
embedded I&F neurons (thick dashed line). (iv) All inhibitory cells are coarse-
grained using the mean firing-rate representation (Eq. 5) and the excitatory
cells are modeled as embedded I&F neurons (thin dashed line). The external
drive is modeled by Poisson spike trains with the rate fue(t) = 13. X (1 +
0.25 sin(27f,t), f, = 10 Hz, and f = 0.01.
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Fig. 4. Steady-state firing-rate curves as a function of the average input
conductance (a) and cycle-averaged firing-rate curves for the embedded,
excitatory complex cellsTin a four-population model with both excitatory and
inhibitory cells of simple and complex types in comparison with the full I&F
simulations (thick solid line) of 400 neurons with network connection prob-
ability p = 0.25 (b). Half of the simple cells are coarse-grained using the
kinetic theory (Eq. 2) with the Poisson spike reconstruction in the feedback to
the embedded point neurons (thin solid line), in contrast to where only the
mean rate from the kinetic theory (Eq. 2) is used in the feedback (dashed line).
The external drive is modeled by Poisson spike trains with the rate froe(t) =
13. X (1 + 0.5sin@2nf,t), f, = 10 Hzand f = 0.02. Cycle-averaged firing
rate is the rate averaged many periods of the stimulus at 10 Hz by m(t) =
SN m(t + nT)/N¢for0 < t < T, where T is the period.

neurons through the direct use of this modulated mean firing
rate would be just as effective. The results shown in Fig. 4
establish that it is not, i.e., it does not capture the fluctuations
well enough for an accurate description. Fig. 4a shows firing-rate
curves for excitatory complex neurons as a function of the
average input conductance Ginpwe = frwoe for steady inputs,
whereas Fig. 4b shows cycle-averaged firing rate under tempo-
rally periodically modulated inputs. In both the steady state and
dynamically modulated cases (Fig. 4), the firing rates of embed-
ded neurons compare quantitatively very well with those of the
full I&F network simulation when the PSR is used in combina-
tion of kinetic theory, whereas the modeling error in the rate of
the embedded approach can be rather substantial without the
proper fluctuation effect in the feedback from the CG back-
ground. Indeed, PSR is needed in fluctuation-dominated sys-
tems; thus, elsewhere in this article, we always use PSR.

Having addressed the modeling accuracy issues of the hybrid
approach, we turn to the demonstration of its full power in
modeling situations when there is a distinguished subnetwork of
neurons which are sparse yet strongly coupled. Here, we consider
an idealized network containing such a subnetwork, both to
illustrate the necessity of the embedded network to model this
situation efficiently and to contrast with another modeling
situation in which “test neurons” within a kinetic theory can
provide an adequate description.

The idealized network constitutes a four-population network
of 400 neurons; each neuron is either simple or complex,
excitatory or inhibitory. There are only eight complex cells in this
network, forming a distinct subnetwork that is very strongly
coupled. [Synaptic coupling strengths for these strongly coupled
complex cells are S¢ = (0.4, 0.4, 0.8, 0.4) in contrast to Sg =
(0.1, 0.2, 0.1, 0.2) for the simple cells in the background and
Scps = (0.25, 0.2, 0.25, 0.2) and Sgpp = (0.025, 0.05, 0.025,
0.05) for the couplings between the subnetwork and the CG
background.] Fig. 5 displays the dynamics of this network
characterized by (i) raster plots, (ii) cross-correlation as quan-
tified by the conditional firing rate, i.e., the probability per unit
time that the jth neuron fires, given the condition that the ith
neuron fires, averaged over all i and j, and (i) ISI distributions.
These characteristics from the simulation of the full I&F net-
work (Lower) are successfully reproduced by the hybrid ap-
proach (Upper), when all simple cells are coarse-grained using
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Fig. 5. Dynamics of strongly coupled embedded subnetwork on a back-
ground under an external input rate that is constant in time. Plotted are: (/)
Raster plots, only the eight complex cellsT in the distinct subpopulation are
shown (neurons labeled 1-6 are excitatory, and those labeled 7-8 are inhib-
itory); (ii) cross-correlation (see text); and (iii) ISl distributions. (Lower) Simu-
lation of the full I&F network; (Upper) Hybrid approach when all cells in the
background are coarse-grained by using the kinetic theory, except for the
eight distinct complex cells that are treated as an embedded network of point
neurons.

the kinetic theory, and the eight distinct neurons are treated as
an embedded network of point neurons. These results demon-
strate that our approach can successfully capture high-order
statistics between two different neurons (e.g., cross-correlation)
as well as for the same neuron (e.g., IST). Instead of this constant
external stimuli, a more useful and interesting situation for
demonstrating the power of the hybrid approach is when the
background actually has its own response dynamics to time-
dependent stimuli. Here, the hybrid network really shows its
ability to capture the distinct dynamics of the strongly interacting
embedded subnetwork as demonstrated in the Fig. 6 Lower.
Clearly, in addition to the cross-correlation induced by the
external periodic drive (as captured by the test neurons in Fig.
6 Upper), the strongly interacting embedded neurons exhibit a
stronger cross-correlation with more fine structure, which re-
flects relatively coherent recurrent dynamics of their own sub-
network. Furthermore, had we used merely test neurons to
extract spike information of the embedded network, we would
have obtained a singled-peaked ISI distribution instead of a
double-peaked ISI distribution for the interacting embedded
neurons (Fig. 6).

If one merely desires firing statistics of individual neurons in
the background, test neurons in the embedded subnetwork will
extract that information from a background whose full dynamics
is modeled by kinetic theory. Fig. 7 shows excellent agreement
between the ISI distribution of firing statistics of a sample
neuron in a network, obtained by the full I&F network simula-
tion, and that of a test neuron in the CG background description
by kinetic theory.

To further illustrate the usefulness of the embedded neurons
(actually in the sense of test neurons), we use our hybrid
approach to construct a RTC (Fig. 8). RTC methods enable the
experimentalist to probe the dynamical response of a cortical
network from a system-analysis viewpoint. Based on “spike-
triggered counting,” these methods are most directly modeled by
using detailed spike-timing information and thus are natural for
the applications of embedded point-neuron networks. In one
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Fig. 6. Dynamics of strongly coupled embedded subnetwork on a back-
ground driven by a time-dependent stimulus. Plotted are: (i) Raster plots, only
the eight complex cells" in the distinct subpopulation are shown (neurons
labeled 1-6 are excitatory, and those labeled 7-8 are inhibitory); (i) cross-
correlation; and (iii) ISI distributions. (Lower) The hybrid approach when all
cellsinthe background are coarse-grained by using the kinetic theory, and the
eight distinct complex cells are treated as an embedded network of point
neurons. (Upper) A subnetwork of eight test neurons in interaction with the
background but without interaction among themselves. The external drive is
modeled by Poisson spike trains with the rate froe(t) = 20. X (1 + 0.25
sin(nf,t), f, = 1Hz,and f = 0.01.

version of these methods (21), the experimentalist sequentially
presents an anesthetized monkey with a grating stimulus, chosen
randomly at every refresh time Tiefresn from a collection of
grating patterns with varying orientations and spatial phases, and
measures the response of an individual cell in V1 extracellularly.
For each spike, one asks at time 7 earlier, what was the
orientation and grating angle of the stimulus pattern presented?
Running over all spikes, one measures the probability P(6, ¢; 7)
that, at time 7 before each spike, the stimulus had orientation 6
and spatial phase ¢. P(6, ¢; 7) provides an estimate of the
first-order linear response function of the cortical system.
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Fig. 7. Extraction of ISI distributions of neurons in the background, test
neuron method. (a) Test neuron driven by a CG neuronal patch described by
the kinetic theory. (b) Sample neuron from a full network of I&F neurons. We
note that the firing rate of the neuron in the full I&F network is 46 spikes per
sec, whereas the test neuron driven by the CG background has 45 spikes per
sec, with only a 2% of relative error.
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Fig. 8. Reverse-time correlation for a simple cell in a ring model for the orientation tuning dynamics of V1 neurons. (See Supporting Text for the LGN model
we used.) The flash rate of the external patternsis 100 Hz. (a) RTC obtained from an |&F network simulation of the ring model. (b) RTC obtained by coarse-graining

all complex cells in the ring model by using the kinetic equation.

We have constructed the RTC for neurons on a ring that
models the orientation-tuning dynamics of V1 neurons (9, 12, 22,
23). The spatial (i.e., angular, here) couplings are described by
Gaussian kernels. In the hybrid approach, the kinetic theory now
has to be generalized to include multiple interacting angular
populations to adequately model the orientation dynamics, and
the coupling among these populations is the generalization of
Eq. 3 (see Supporting Text). Fig. 8 shows phase-averaged P(6,
7) = [ P (0, ¢, 7)d ¢ for a representative simple excitatory cell,
computed, respectively, from (i) a network of I&F neurons and
(#i) an embedded network of point neurons within a CG back-
ground described by the kinetic theory. We obtain an excellent
agreement between the result for the full I&F network with
those of the embedded network.

Discussion

Computational modeling in visual neuroscience faces scale-up
issues that must be resolved if the models are to represent regions
of the visual cortex of sufficient size to capture the most
interesting perceptual phenomena. For these purposes one must
represent several cortical regions, each with multiple cortical
layers of significant lateral extent, with their response potentially
governed by fluctuations in conductances and voltages. The CG
kinetic theory, such as developed in ref. 12, provides a possible
resolution of these scale-up problems. However, these CG
averaging techniques include a local averaging in time; hence,
these methods do not retain detailed spike-timing information of
the individual spiking neurons, information that may be needed
for certain types of cortical processing.

Here, we have introduced an embedded point-neuron represen-
tation, benchmarked it for single CG patch, and applied it to an
idealized ring model for orientation-tuning dynamics. This rep-
resentation uses the advantages of the CG kinetic theory, while
retaining detailed spike-timing statistical information for an
embedded subnetwork of point neurons. We have shown that
this embedded subnetwork approach is both numerically accu-
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rate and efficient. It has a wide range over which it can be
implemented, from that of an individual “test neuron” to that of
a distinguished subnetwork of sparse, strongly interacting point
neurons, embedded within and fully interacting with the neuro-
nal background described by a CG kinetic theory. We note that
the main limitation to this CG approach arises when neurons fire
with spike-to-spike synchrony in the background network.

This hybrid network approach can be very useful in a modeling
situation in which the neurons in the network fall into distinct
biological classes, say, one composed of neurons that are dense
enough that averaging is natural; and the other class composed
of neurons that are sparse (or have sparse synaptic connections),
yet with their synapses strong enough that this sparse subnetwork
fully interacts with the neurons of the other subnetwork. Bio-
logical possibilities for this sparse subnetwork include (i) neu-
rons near positions of rapid change of cortical maps (such as near
orientation pinwheel centers); (i) neurons with long distance
connections, which are relatively sparse, yet strong; (iii) neurons
and synapses that describe connections between cortical layers;
and (iv) neurons of some distinct anatomical type, with strong
synapses. Where a strong sparse subnetwork is not present,
kinetic theory can be used to represent the entire network,
together with embedded “test neurons,” which captures spike-
timing statistical information, useful for modeling of certain
important biological measurements, such as RTC.

Finally, another potential advantage of this embedded sub-
network approach is that the embedded neurons need not be
I&F point neurons. Rather, more realistic models such as
Hodgkin-Huxley compartmental models could be used without
much loss of numerical efficiency (because of the relatively small
number of neurons in the subnetwork).
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