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Abstract

This paper continues our study of the use of paired vortex structures in
the construction of incompressible Euler flows in three dimensions which
produce substantial vorticity growth. These flows, which have been con-
sidered before as candidates for Euler blow-up, are here derived in a geom-
etry which is the product of moving planar curve C(t), the center vortex
line, and locally almost two-dimensional fluid motion in planes P(¢) or-
thogonal to the curve. In the present part we show that the construction
of a non-self-similar flow of the kind proposed here can be reduced by con-
tour averaging to a generalized differential system. Each section consists
of an invariant 2D Euler flow, assumed here to have the contour structure
of paired vortices of opposite sign, of a size compatible with the requisite
propagation speed of the singular cocoon. Axial flow within the cocoon
alters the local contours from section to section. This leads to a complex
interaction of the generalized differential system with the kinematics of
the center vortex.

To simplify this interaction we propose here that the Batchelor couple
introduced in part I is one of a family of invariant 2D flows suitable for the
construction of a singular Euler flow in 3D. This family includes vortices of
arbitrarily small cross-section, allowing the self-induced stretching of the
vortex pair to be decoupled from the variation of the circulation profiles
by the axial flows. We thus propose to show in the present paper that
the thin-vortex limit of these extensions of the Lamb-Chaplygin-Batchelor
couple (acknowledging the prior presentations of this solution of the steady
Euler equations) offers the first clean example of blow-up of Euler flows
in three dimensions.

A crucial issue is the axial flow in the vortices, which we shall treat
in this part using a one-dimensional model. This has the advantage of
leading, for the fixed-point problem at the core of the existence of the blow-
up, to an ODE problem which is readily solved numerically. Surprisingly,
our model shows that the squeezing down of the cross-section of the self-
stretching vortices overcomes the axial flow induced by the lower pressures
of the most stretched section, so that the axial flow is in fact away from
the singularity region.



Some implications of such solutions for Euler flow theory are discussed.
We conjecture that the solutions are highly unstable and not directly
observable in numerical simulations. We also give reasons for the absence
of any such singularities for the Navier-Stokes equations. The final phase
of this research will deal with the full PDE problems for the non-self-
similar Euler flow associated with the blow-up.

1 Introduction

The present paper continues our study of vortex stretching in flows of simple
topology. In [Childress (2006)], hereafter referred to as I, we argued that Euler
blow-up, if it occurs at all, is in some sense extremely rare. In the present paper
we explore a family of flows which are related to paired vortex flows previously
proposed as candidates for finite time singularities. Studies of this kind are im-
portant even if they lead to negative results, since it is essential to understand
the often invoked “depletion of nonlinearity” as an explanation of the lack of
any convincing evidence of Euler blow-up. However the present work suggests
that in fact there do exist Euler flows (probably unstable) which produce infi-
nite vorticity in finite time. The flows we study involve non-self-similar vortex
stretching of paired filaments without the constraint of non-swirling axial sym-
metry, obtained in the kinematic model put forward in section 3 of I. We use the
term “kinematic” in a slightly perverse way, referring to the blow-up of paired
vortices as obtained in I, without a dynamical basis for the relation between the
advection of vortices by the normal, and the local Jacobian of the center vortex
of the pair.

We first review some of the ideas presented in I. According to [Beale, Kato & Majda (1984)]
blowup is accompanied by infinite vorticity, and this is achieved by the stretch-
ing of vortex lines. The stretching can be achieved by the variation of the
velocity component tangent to the line (shear stretching), or else by advec-
tion in the direction of the negative normal of a curved vortex line (expansive
stretching). Shear stretching is important in the model studied by [Pelz (2001))
and may well dominate the stretching events in turbulent flows on many scales.
But it involves sheared vortical structure in order to make the velocity induced
by vortex tube A stretch tube B and vice versa. Expansive stretching was in-
voked and pioneered in the models of [Siggia (1985), Pumir & Siggia (1990)],
and of [Kerr (2005)], and has the attraction of being accessible by vortex lines
which are locally parallel, provided that paired structures of opposite sign are
so aligned. In particular nearly two-dimensional flow structures are capable of
self-stretching. This makes paired vortex structures attractive for analysis of
singular behavior in Euler flows. Numerically, however, singularity formation
seems to be stalled by deformation of the structures in the final phase. The
structures studied by Kerr are not locally 2D, but are similar in some respects
to the “hairpin” singularities of the kinematic models considered in I. We will
discuss below the relation of our work to that of [Pumir & Siggia (1990)].

To investigate how fast paired structures can self-stretch, we considered in I



the simplest family of Euler flows in 3D where this happens, namely axisymmet-
ric flow without swirl, where the vorticity has the form (0,0, wg) in cylindrical
polar coordinates and all vortex lines are circles about a common axis. It is well
known ([Majda & Bertozzi (2002)]) that wg then grows at most like an expo-
nential in time, so blow-up does not occur. In I we examined the implications of
constant vorticity support volume on the maximal rate of growth. We estimated
kinematically the optimal configuration for maximal expansive stretching of a
target ring given an initial bound on |wy/r|, and found that vorticity grew in
fact no faster than O(t?). We called this optimizing arrangement of vorticity
a kinematic cocoon. The kinematic cocoon conserves volume, but not kinetic
energy, which grows in proportion to the radius of the target ring.

We also found in I that there is another cocoon construction which conserves
energy but not volume, leading to growth as O(t*/3). It appears that both
constraints can be satisfied kinematically by cocoons which shed filamentary
vorticity, although the constraint of energy conservation is essential only when
axial symmetry is imposed. This point will be important in the present paper.

The O(#?) maximal growth of the kinematic cocoon of constant volume sug-
gests comparison with quasi-2D flows. A classical solution of FEuler’s equations
in two dimensions, consisting of a pair of oppositely sign vortical regions con-
tained within a circular boundary r = a, may be found in [Batchelor (1967)],
a solution that goes back to the work of Lamb and Chaplygin. ! The dipolar
structure moves without change of form at a constant velocity. In three dimen-
sions we may consider an analogous thin toroidal structure as an initial vorticity
of an axisymmetric flow without swirl, which then expands while maintaining a
self-similar structure. Since vortical flux is conserved, wga®? = O(1). The speed
of propagation ~ wya, and the torus volume must be conserved, Ra? = O(1)
where R is the large radius of the torus. It follows the speed at large R is ~ V/R,
leading to R = O(t?), at a rate satisfying our bound. This estimate omits the
fact already noted, that the kinetic energy of the toroidal structure, which may
estimated as O(w2a*R) ~ O(R) increases, so the circular boundary of the vor-
tex does not survive-there must be core deformation to conserve energy, along
with a lessening of vortex stretching.

If one relaxes the constraint of axial symmetry and assumes that paired
structure moves as a Lamb-Chaplygin-Batchelor (LCB) couple in all local sec-
tions, then, as we showed in I, of a line moving in this way by the normal
produces a finite time singularity. At the singular time vorticity is infinite at a
point, but only a finite amount of total stretching of vortex lines has occurred.
The question raised in the present part is essentially, can this kinematic pic-
ture survive if the paired structure satisfies Euler’s equations in an appropriate
sense associated with the asymptotics of the singularity? The dynamics involves
possible core deformation as well as the creation of axial flows induced by the
pressure gradients developed when a vortex is stretched locally. We shall show

n I we termed this structure a Batchelor couple, because it was a prominent example
in [Batchelor (1967)]. As might be expected, the solution has a richer history, which was
discussed in [Meleshko & van Heijst (1994)]. Horace Lamb and S.A. Chaplygin describe this
structure and its variants over a century ago, see [Lamb (1906), Chaplygin (1903)]



that if the paired structure is initially a LCB couple at each section, it will sub-
sequently evolve according to a generalized differential system. The dynamics
must, under this system, depart from the kinematics described in I.

Nevertheless, the dynamical description developed here contains the possibil-
ity of using other 2D Euler solutions as the underlying cross-sectional flow, and
we argue here that there exists a family of flows including the Lamb-Chaplygin-
Batchelor flow. Included are paired vortex tubes of near circular vortex section,
which allow the implications of the generalized system to be studied analytically.
This is a key step which breaks the deadlock over coupling of the velocity of the
vortex pair with the core dynamics. The two essential features are, first, the
fact that it is only the total circulations of the vortices, the constants +I" say,
which determine the velocity of the pair, and second, for small cores the core
boundary is essentially a circle, allowing an axisymmetric treatment in classical
terms,

2 The dynamic cocoon

We now refer to curve C(t), studied in section 3 of I, with v € (1/2,1), as the
center vorter. It will actually be a vortex line on which vorticity vanishes. We
introduce the time-dependent orthogonal curvilinear coordinate system derived
from the center vortex, with triad (n,b,t), coordinates (£,7,(), and metric
ds?> = d€? 4 dn® + h%d(¢?, where h = 1 — £k. The cocoon boundary will be
the surface C : £ +n? = 1x72, —00 < { < 400, the numerical factor insuring
that h remains positive within the cocoon. We wish to solve Euler’s equations
within the cocoon starting at an initial time ¢ = T" < 0, and to do so we need
to supply an initial vorticity field, then track its evolution under the constraint
of Euler’s equations and some boundary conditions associated with the cocoon
boundary. We assume that the fluid density is unity. As we shall make clear
presently, the initial vorticity will be confined within another surface B : £2 +
n* =r%(¢), —o00 < ¢ < 400, and we may in fact choose max_oo<¢<too k7B tO
be as small as we like. Indeed on the curve g is positive and has the estimate
(??) for sigma large, from which it follows that x/g is bounded as a function
of 0. Thus we may, in the LCB couple, fix a to match the curve velocity, the
decrease it everywhere by a constant multiplier while simultaneously increasing
the flux K by the inverse factor.

For t > T the surface B will be material and track the motion of the center
curve C with 8 = 2 . The tube bounded by B will thus be stretched and the
transverse &, 7 dimensions contract, so that as we can understand its evolution
from the dynamics of C'. Therefore, the crucial issue is the behavior of the
curve in the neighborhood of B as 7 — 0 with o fixed. Assuming that we have
indeed set up the initial vorticity so as to track the motion of C. Then, our
analysis shows that &7~ O(77) and k! ~ ( ~ O(7177) where A ~ B means
that A is neither much small than, nor much larger than B as 7 — 0. We will
wee that vorticity kinematics will then imply that u ~ v ~ O(777), and it will
also transpire that w ~ O(777) and that pressure satisfies p ~ O(7727). These



estimate allow us to estimate the size of all terms in Euler’s equations in this
coordinate system.

In Cartesian coordinates Euler’s equations for an incompressible fluid are
(assuming that the fluid density is unity)

w+u-Vu+Vp=0, V-u=0. (1)

To write these equations in the new coordinate system we need a few differ-
entiation formulas derived using the chain rule. For any scalar function f we

have of of
A 2)
at 1e,n,¢o ot

We assume that the curve moves according in the direction of the normal as in

I, but now take the curve velocity as u = U((, t) in the direction of the normal ,
since we want to use u, v, w for fluid velocity in the present coordinate system.

n 3x’
x,Y,% at &,m,Co

Thus % = Un. Then
YN
or,  of of
8t x,Y,z o 8t £,m,Co N U8§ ' (3>

We also have

d(n, b, t) ~ O(n,b,t) d(n,b,t) O(n,b,t)

= +U = R 4
ot T,y,2 ot ’fﬂ%(o 85 ot £,m,Co ( )
so that, since
d(n, b, t)’
_ = (U¢t,0,—U¢n), 5
o lemc (Ug ¢n) (5)
we have
0 b t
(un+vb+w )’ = n(Du + wU;) + bDv + t(Dw — ule), (6)
ot £,m,¢o
where

0 0
p=2 —vZ.
5tlemc, ~ Uz @)

We also have the standard formulas

u-Vu= [uu§ + vy, + hfleC — h*1w2h§] n
+ [uvg + vuy, + hilwvg — hilehn]b

+ [uwg +vwy, + htwwe + A w(uhe + vhn)} t. (8)
The equation V - u = 0 becomes

Ohu  oho | ow

5+ oy T ¢ =" (9)



Finally, the pressure term is Vp = (pg¢,py, h~'pc). Taking the density of the
fluid to be unity, and setting u = U + v/, the equations of motion become

i+ u'ug +vul, + (1+h™wu; — h ™ whe + pe + Uy = 0, (10)
vo + u've + vuy, + hilwvg — fflw2h77 +py =0, (11)

wyo — ' U +u'we +vw, +h ™ wwe +h™ w(uhe +vhy) +h ™ pe —UU: = 0, (12)

o' Ohv  dw

— +Uhe =0 13
o€ + o + ac +Uhe (13)
Here the subscript t0 indicates that (p, not ¢, is held fixed.
Since hy, = 0, h¢ = —k, the equations for w = v¢ — u, and w are

wio + u'we +vwy + b wwe + b w(' s + Uk — we) — 2 fww,k
—(1+ A Hw,Ue + h2kwve + b tweve — hilwnu’c =0, (14)
wyo — ' Ue + v/ we +vw, + ™ fwwe — h™twus +htpe —UU: = 0. (15)

We rearrange these equations as follows:

vw'we +vw, = F, (16)
uw'we + vw,, = Fy, (17)
ug + vy = G. (18)
Here
F, = —wpo—h'wwe —h rw(u'k — we) — R wUk + 2 tww,k
+(1+ A HYwyUe — h™*kwve — b~ weve + h™ Mwyug, (19)
Fy = —wio + Ukw — h 'wwe + h™ Uk + b wu's — hipe + UU:,  (20)
1 1 1,
G= EUH—EwC—FEAu. (21)

2.1 Ordering and expansion

We now consider the ordering of terms in the singular region o = O(1) as 7 — 0.
We have the underlying orders

(5’ ?77 C) = O(T’Y’ T’Y’ Tli’y)’ (u/’ U’ ’U) w) = O(Ti’y’ Tﬁ’y’ Tﬁ’y’ Tﬁ’y)’ (22)

and also
w=0"?),k=0(1""1). (23)

Note that we have assumed the axial flow component w is of the order of the
transverse components although no formal order is indicated by the motion of



C. We also have h = 1+ O(7>771),t = O(7),p = O(7727), and recall v > 1/2.
We may therefore rewrite (16),(17),(18) as follows:

w'we +vw, = FY 4 0(r72), (24)
u'we + vw, = FY 4+ 0(r772), (25)
up + vy =GV + O(r72). (26)
Here
FWY = —wip — Ukw — wwe — w(u'k — we) 4 2wwnyk
+2w,Ue — weve + wpug = O(772771), (27)

FY = —wyo+ Ukw + uw'Us — wwe +wu's —pe +UU: =O(r777h),  (28)
G = Uk —we + wu' = O(r7h). (29)

The orders of these forcing functions reflect the order of every term in the
function. The left-hand sides of (24),(25),(26) are respectively 747, 7737 7727,
so that in each equation the ratio of forcing to left-hand side is O(727~1) = o(1),
and the ratio of the error to the left-hand side is O(7#7~2). Thus if ¢ is take as
O(r?771), we may introduce expansions of the form

QZQO+Q1+---aQn:(u;avn)aU’ZWO‘i‘wl‘i‘---a (30)

w=wytwr+...,p=po+p+..., (31)

where the subscript 1 terms are smaller than the subscript 0 terms by a factor
of §, and the errors are still smaller by another factor 4.

2.2 The first-order solution and compatibility of the zeroth-
order solution

The first-order terms satisfy
Qo - V[ws, wi] = [F{ (w0, qo, wo), F{ (wo, qo, wo)] — a1 - Viwo, wo],  (32)

V - qi = G(qo, wo). (33)

At each section ¢ =constant the zeroth-order terms represent a flow with stream-
lines 1) =constant, when projected onto the £, n plane. Here we adopt the defini-
tion of the stream function used in [Childress (1985)] because of its convenience
for contour averaging: g_:/; = —uy, g_qp = vg. We assume now that all streamlines
of interest are closed. In the special cases discussed below, the zeroth-order
transverse flow consists of two families of closed streamlines bounded by a cir-
cle. We shall assume a similar topology prevails in each section, although it
may not agree with the LCB couple owing to advection of vorticity by an axial
flow.

We may by symmetry restrict attention to one of these closed streamline
patterns. (For the LCB couple, since U < 0,the streamfunction lies in the



interval .67Ua < 1) < 0 in the upper eddy and in the interval 0 < ¢p < —.67TU A
in the lower eddy.)

The solution of (32) requires that the right-hand sides satisfy compatibility
conditions in each region of closed streamlines. Dividing each equation by ¢o and
integrating around any closed contour ¢ = constant we see that each right-hand

side must satisfy
(RHS) =0, (34)

where the contour integral operator (-) is defined by

(= faiteds= §raan-dx. (35)

The differential calculus associated with the use of this operator has been dis-
cussed in [Childress (1985)]. In that paper solutions of Euler’s equations similar
to those of interest here, but lacking the crucial terms associated with vortex
stretching, were analyzed in a nearly two-dimensional geometry. We summarize
in the appendix the results needed for the present calculation, and here state
the final equations emerging from the contour averaging. The two right-hand

sides in (32) yield
(H
vuy [FRSas =0 o

Aﬂ)(Dﬂ)w - UHW) / 8 Hd” d1/) - UUCAﬂJ =0. (37)

Adl (D¢w + UIQ(.«)) —

The function A(%, ¢, t) is the area enclosed by the averaging contour,and H (¢, ¢, t)
is the Bernoulli function of the zeroth-order transverse low, H = p + %qg. All

spatial partials are in the independent variables 1, (. The differential operator
D, is defined by

0 0
D = — —_ -
B at’g,n,<0+wa<+va¢’ (38)
where ou 31/1
V=AY = ta Vi), (39)

9t lenco T OC e
have the dimensions of a velocity squared, is the product of the average contour
velocity an a velocity measuring the fluid flow across the streamlines of qg. A
expression for V follows from the formulas given in the appendix:

—A¢V Ao + ’LUAg + / d1/) UkA. (40)

(¢

2.3 Conservation of flux

We now establish the following consequence of the contour-averaged equations
of the previous subsection: within the region of closed streamlines we have

D¢F = 0, I'= /AwdeU) (41)



We may choose I" to vanish at the eddy center, so (41) holds there. We have
DyT = /(A¢H¢)td1/) + w/(A¢H¢)<d1/J +VAyHy. (42)
Differentiating with respect to 1, we get
(DyD)y = Hy Dy Ay + Ay Dy Hy +wy /(AwHw)cdw +VpAypHy.  (43)

We rewrite the v derivative of (40) as
Dﬂ)Aﬂl = UIQA¢ - Aﬂlvﬂl - A1/1wC' (44)

Using (44) and (36) with w = Hy, in (43), all terms cancel upon integration by
parts, and (41) is established.

The physical meaning of (41) is clear. It is essentially Kelvin’s theorem ap-
plied to the contours of an almost two-dimensional eddy, with I" the circulation
around a contour, expressed here as a flux integral. The V9/9y term of the
differential operator Dy, indicates that the circulation contour moving with the
fluid drifts across the contours ) = constant because of the { dependence of w.
This is an order one effect which appears with the compatibility constraints.

With (41), (37) may be rewritten

Ay[Dyw — Ukw + (H — U?/2)¢] = T. (45)

We thus have the four equations given by (40),(41) and (45) for the five un-
knowns A, T, H,V,w. The missing relation is the solution of V21 = Hy, yielding
the streamlines and hence the area A contained by any contour. We are thus
dealing with an example of so-called generalized differential equations, see e.g
[Grad et al (1975)]. In a GDE the nonlinearities involve nonlocal dependence
on the dependent variables, here the relation of streamlines to H.

A point that will be useful below concerns the ¢ differentiations in (45). As
written these are holding i fixed. The claim is that these may also be taken
holding &, 7. To prove this, note first the U? term depends on space through ¢
only. Now

O(H,T) O(H,T)| 9y O(H,T)
= + = 46
W IR o e (46)
Thus o
ApHcle —Telen = ApHely — Tely + 8—<’£ n[AwHw =Tyl (47)

Noting that Ay Hy —I'y =0, we are done.

2.4 Equations for a singular solution

To examine blow-up in the generalized differential setting we need to scale cer-
tain variables as follows:

A(C 4, t) =7 A(0, 4, s), H(( 0, t) =72 H(o, 1), s), (48)



w(C, . 1) =777B(0,,5), (&) =77(E,7)- (49)
Note that T and 1) are O(1) in 7. The variable s = In7 is the reduced time in

the evolution of the singularity.
Dropping tildes, the evolution equations in o, %, s thus take the form

’LUS—|—_7:U,[$,A,F,H]:O, FS—|—.7:F[$,A,F,H]:O, (50)

with subsidiary equations
I = /A¢H¢d1/1, V2 = Hy. (51)

We allow dependence on s which is non-exponential, so as not be equivalent to
a modified power of 7.

Existence of blowup in the present setting reduces to finding a solution of this
system representing a paired vortex structure which propagates with a velocity
determined by the zeroth-order flow.

2.5 Symmetrization

The system just described takes on a more familiar form when expressed in an
effective axisymmetric form, a process often referred to as symmetrization. The
reduction is analogous to passage to action-angle coordinates in Hamiltonian
mechanics. We first define a the effective radius of a contour ¢ = constant by

A, ¢ t) = mri (¥, (. ). (52)
Thus the symmetrized contour is a circle bounding the same area. Setting
P
87" = UE; (53)

we refer to v as the effective #-component of the zeroth-order velocity. We may
compute in two ways

0A o
ara = 27TT8 = Aw ara = Ad)’Ue, (54)
and so 5
TTe
Ay == (55)
We also set 9 9 9
Dd,:D + W= + Ue (56)

T ot &1,¢0 ¢ 8_7"8'
Thus u. must be the average drift of the fluid past the contours i) = constant.
From the form of D, we see that the total flux across a contour must be the
integral around the contour of V/ g—ﬁ =V/qo. If this average flux is to be given
correctly by u. we must have

VAy = 21Tele, (57)

10



or

V = Uee. (58)

Regarded as functions of r., (, ¢, the conservation of mass equations now takes

the form
ow _10rele

- 4
OC lret ¢ Ore et

We also have, from conservation of circulation and (45)

— Uk =0. (59)

D.I' =0, 2mrDew—Ukw+ (H—U?/2)¢]—v.I¢=0. (60)
Finally we have, from the definition of T (41),

OH ar
277, o Ve . (61)
This gives us four equations for u,, v.,w, H,T', so we are missing one relation,
again an indication of the generalized differential system we have. Note that,
because of the differentiation property we noted above after equation (45), the
¢ derivatives of H,T" in the second of (60) may be taken at fixed 7.
For exactly axially-symmetric flow the missing relation is

I'=2nreve, (62)

which are easily seen to give the axisymmetric form of the first-order compati-
bility equations, namely (59) and

op—-U?/2 19) 2
D+ 22U 0 Dy =0, 2V (63)
a¢ Ore  Te
where )
p=H— v (64)
2.6 Zeroth-order solutions
The leading order terms satisfy system
qo-V[wo,wo]:(), V'QQZO,V:(ag,an). (65)

These equations describe a steady two dimensional Euler flow with three velocity
components. Recall we define the streamfunction 1 so that —, = u(, ¥e = vo.
Then wo = Y¢¢ + Yy, = Hy where H = po + %qg, is the Bernoulli function.
From (65) we see that wy and wq are functions of £, n through the stream-
function v, with (¢ present as free parameters. At this stage we are free to
chose the dependence on 1. Note that ¢ may depend arbitrarily upon ¢ and ¢.
We choose these functions now to conform to the assumed motion of the
center vortex C(t). If, as we have assumed, the center vortex C(t) is moving
at a given ¢ with velocity u = U((,t), then an observer moving with the curve

11
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Figure 1: Streamlines of the LCB couple.

will see a velocity “at infinity” given now by (u,v) = (=U,0). Accordingly we
adopt a steady flow which takes on locally the required velocity at infinity. For
the moment we disregard the global restrictions on the cocoon imposed by the
coordinate system and consider the local flow as two-dimensionally infinite in
extent.

A sample flow is the LCB couple , shown in figure (1). In polar coordinates
it has the stream function

r—a/r ifr>aq,

¥ =U(Gt)sing { CJi(Kr) ifr<a. (66)

The vorticity is given by

_J0 if r > a,
w_{—K21/) if r < a. (67)

The paired vortex structure is here contained within the circle of radius a(, t)
The parameter K ((,t) is chosen to make J;(Ka) = 0, the smallest value Ka =
3.83 being adopted here to give the streamline pattern shown in figure (1). The
parameter C'(¢,t) is chosen to make the velocity continuous on r = a,

C = 2/[K Jo(Ka)). (68)

The LCB couple corresponds to the generating Bernoulli function H(¢) =
+K29?/2. Tt is clear from the contour averaged equations that the function H
cannot be stipulated to remain that of the LCB couple, because of the advection
of circulation by the axial flow. As a result the propagation velocity of the pair
will be altered by the axial flow, and the kinematic picture of I will be expelled,
raising the possibility that singularity formation is arrested.

However we shall argue here that the Lamb-Chaplygin-Batchelor solution
is one of a family of propagating paired vortex structures, any one of which
is a candidate for our 3D construction. Moreover, this family includes thin,
distinct paired vortex tubes whose cross-sections are nearly circular, and for
which the propagation velocity decouples from the internal circulation profile,

12



Figure 2: Streamlines of the paired vortex structure described by (136) and
(137), 2rUL =T, R = .2L. The vortices are shaded.

approximately. In this limit the vorticity is confined to symmetrically placed
cores of order R say, placed a distance L apart. If this separation o scales
persists, the pair propagates essentially as paired line vortices. In a frame
stationary with the advancing pair, one sees a region of fluid which is carried
with the pair and where the flow is irrotational, see figure 2. The structure
of the cores can be studied analytically for small ¢ = R/L, and we show in
appendix B that through order €3 the boundary of the a vortex core relative
two its center is given by

r/L = €+ € cos 26. (69)

Within the core we have to this approximation
L[ ), i)
2w LkRJ1(kR) Jo(kR)

where kR = 2.4048... is the first zero of Jy. The velocity of the pair is then
given by

Y= cos 20|, (70)

r
~5 7

We now propose to treat each then vortex as circular, in which case the
symmetrized model acquires a new symmetry and becomes solvable in classical
terms.

(71)

3 Development of the s- independent singularity
in a symmetrized model

We consider a paired vortex structure modeled in each section by two circular
vortex patches of radius Ro((, 7), see figure (2). We look for a fixed point of
the system, i.e. we assume no dependence upon the local time s. In the upper
disc, we have the following problem. Let r. = "R, w =17 "W, rev. = I, u. =
—r U U™ + 77711, We also now take L = A77. Then we have

AW + (1 +4)oWy — (1 4+ 7)og,9 ' RWr
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49 PWWy +UWR + g 2Py +2(v + (1 +9)0gog” )W =0,
(14+~)oTy — (1 +7)0gsg *RTgr + g 2WT, +Ul'R = 0,
Prp =T?/R?,

g *Wy+ R YRU)g = 0.

72
73
74

(
(
(
(75

)
)
)
)

We require that, on R = Ry(0), we have
T'(Ro,0) = 21Ag(0). (76)

The issue is, does a solution to this problem exist? We need to solve for
W, T, P,U as functions of o, R, for which we have four equations, then solve for
Ry(0) to satisfy the last condition.

4 A one-dimensional model of the thin vortex

One-dimensional models of thin vortices with axial flow have proven extremely
useful for analyzing vortex dynamics, see e.g. [Moore & Saffman (1972)]. We
therefore turn now to such a model in the context of paired vortices. In the
thin-tube limit, the vortices may be treated separately as filaments carrying
constant circulation. The variation of cross-sectional area with axial flow has
been discussed in a one-dimensional setting by [Lundgren & Ashurst (1989)],
and our model will be closely related to theirs, but with emphasis now on the
terms due to the motion and metric of the coordinate system.

The one-dimensional model of the symmetrized vortex with circular stream-
lines involves an axial flow w((,tp), a cross-sectional area a((,tg), and a “pres-
sure force” f((,tg). (We adopt these symbols locally for this model only). We
have the equations

a(wyy +wwe) + fe —2Ukwa =0,  ay, + (wa)e — Uka = 0. (77)

The “2” appearing in the first equation, in place of the “1” in (63) comes from
the way the continuity equation is used in the derivation. The pressure force
increment df is an average of all pressure forces on a small piece of the tube.
Within the tube, the pressure satisfies

Op

= v /. (78)

If one integrates this over the cross section, using the leading term of (70), the
net force on the section has the form I'? times a function of kR, that is to say
times a constant. That this is generally true follows from a simple dimensional
argument. As the tubes stretch, the pressure distribution is determined solely
by the local core area A and the total circulation I' of the section. Dimensionally
the, p = T2A~! times a function of £/1/(A), 7’/ A. Integrating of the core gives
a multiple of I'2.
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Thus there is know contribution from internal pressure forces on the ends of
the piece of tube to the force increment df. As was noted by [Lundgren & Ashurst (1989)],
the only contribution to df comes from the pressure force on the side wall of he
piece of tube. Integrating (78) from R to oo we obtain
2 2

Thus the axial momentum equation is
2

r
Wy, + wwe + 8_7r(1/a)< —2Ukw = 0. (80)

We now pass to the similarity form of our singular flow, assuming no vari-
ation of the variables with s. We then have, if = v~!, and we set v =
T2V (1,0),w = T IW (7, 0),

29V + poVy)g? + WV, — VW, — 2(vg? + pnoggs)V =0, (81)
F2
(AW + poW,)g*> + WW, + Vot 4(vg* + pogge )W = 0. (82)

4.1 Analysis of the model
We first recall the asymptotics of g as established in 1. 2 For large o,

gN[\/2,ua]%—%[\/Zua]*(ﬁ_z)—l-.... (83)
For small o,
g~ 1—y(1+7)o? +.... (84)

Since the tube must have area at ¢ = 0 we may assume lim,_oV = V5 > 0.
The, from (81), assuming V, W are analytic in o at ¢ = 0, and that V has only
even powers of ¢ in its power series, we see that

VoWo ~ dy(1+7)(1 + 29)0* Vo, (85)
so that , since necessarily W(0) = 0,
W~ (1 +7)(1 +27)0” /3,0 — 0. (86)

It is interesting that this flux is positive, away from the developing singularity,
indicating that the squeezing down by stretching is beating the effect of pressure
forces near o = 0.
It now follows from (86), (82), and the expansion of g that
F2
S—WVU ~ —(8y +3)4y)(1 +v)(1 +2v)0>. (87)

2The case we treat here for the function g is 3 = 2,4 = 1,4 = 1+ . To restore the A
in what follows one need only replace o by Ao. This step will be needed to maintain correct
dimensionality.
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Thus g
™
Vi~ Vo — 55 (87 +3)7(1+9)(1 +29)0%, (88)
so that tube area is increasing as o increases from 0.
Turning now to the behavior for large o, in order that the asymptotic form of
the vorticity becomes independent of time we need W ~ c¢1g,V ~ cag?, 0 — 00
'l
at least in leading order, g ~ O(c~ 7). Let us say that a term has falloff k if
it is proportional to 0¥ to leading order. Then the terms WV, — VW, in (81),

taken together, has falloff 4,7%11, while the last term in (81) has falloff 4,7%12.

Thus the latter term is asymptotically negligible. Therefore (2vV + uoV,)g?

must have falloff 4,7;?, implying that
V~erom G 4o 5T 4L (89)
Similarly the V, term in (82) has falloff 3’7%11, and the last term of (82) has
falloff 2, and this is greater than 23Xt since 4 < 1. Thus the latter term is

7+1
negligible. Suppose now that the first term of (82) is also negligible. Then we
would have
1, T2
W+ —V ~0,0 — 0. (90)
2 8T

This is impossible since area cannot be negative. Thus the falloff of V, must
equal the falloff of the first term of (82). This requires

W~ dio” ) 4 dyo ' + .. (91)

Note that in each case the following term is smaller by the factor o
Then (82) yields

1
1+7)T 2
%@er?/”r g1~ 0 (92)
v2 T+ 77

implying ds < 0.

4.2 Numerical solution

The one-dimensional numerical problem which must be solved to insure the
existence of the needed fixed point of the generalized system will now be sum-
marized. The system is most conveniently solved using ¢ in place of o as the
independent variable. Also I'? /87 may be removed by V — 87V/I'2 equivalent
to setting I' = /87 leaving Vy=1 as the only parameter. The the equations are
then

av aw

i (W + pog®)FV/D + GVW/D, g —FV/D + (W + pog*)GW/D,
(93)
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Figure 3: The solutions of (93), (98) for various Vg, v = .6.

where

a(g) = \/%—ug’“/”\/ 1— g2/, (94)

F =2uog, G=-5y¢>/¢ +4pog, (95)
—2ypog®

1) — 96

9(9) =17 207257 (96)

D= (W + pog®)* + V. (97)

The boundary conditions are
V(0)=W(0)=0,V(1)=Vs>0,W(1) =0. (98)

The necessary integral curves are easily found numerically by shooting from
g = 1 and are shown in figure 3. Note that the axial flow is always non-negative,
never toward the singularity. This, and the smoothness of the integral curves,
insures the validity of the one-dimensional model and is strongly suggestive of
a well behaved fixed point for the generalized system in the thin tube limit.

4.3 The outer potential flow

The total flow fieldin the vicinity of the vortex pair includes the component of
ue given by —U~1Ur., which must be matched with an extgernaal potential
flow. The potential of the outer flow, denoted by ¢,,¢, can be derived as follows.
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In the matching region the votices a locally thin ¢, r. may be replace by z,r,
the local cylindrical coordinates. The we require

,
dpout/dr ~ —;(”y + uogs/g), 1 —0. (99)

We may represent ¢,,: as the Laplace integral
Gous = [ ) Tk (100)
0

The matching requires

e 1
[ e R Pk = 0+ poga9). (101)

0 T

Thus .
EF(k)=—— [ +/9)d 102
(k) 27Ti7'/36 (v + nogs/g9)dc, (102)
where B denotes the Bromwich path in the complex ¢ plane. This can be written
1 G2/

K2F (k) = b 103
(k) 27Ti7'/3€ 1+~ — G2/ ¢ (103)

where G(() satisfies

1—v G
¢ = 1/2_ [GH/V\M — G2 — 2/ w11 - u2/’Ydu}. (104)
K 1

Two points should be noted about this outer flow: (1) We have taken the
(-axis to be a straight line. This is valid in an intermediate region distant from
the center vortex, i.e. 1/£2+n2 > 77 but at a distance small compared to
k™1 ~ 7177, To study the irrotational outer flow at distances O(k~1) from the
center vortex we must take into account the curvature of the center vortex. (2)
The pressure contributed by the outer potential vortex , at the vortex cores, is
negligible compared to that already considered in our one-dimensional model
of the cores. This pressure force, coming from an integral over the external
vortex velocity involving the integrand v3 /r, was of order 7727 By contrast the
radial velocity component is O(77~!) when r ~ 77, contributing only order
727=1 to the pressure. Similarly the ¢ component of velocity in the outer flow
is O(73772) when r ~ 77, and this is again o(7~7) when 1/2 < v < 1. Finally
the time derivative of the potential, a final contributor to the pressure at the
core vortices, is of our 72772 when r ~ 77, again being o(7727).

4.4 Construction of the singularity

We have carried out here an analysis of the asymptotics of the singular flow, and
have made use of a one-dimensional model of the vortex cores. Although not a
rigorous proof of blow-up, we find no inconsistencies in the present construction,
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which would rule out the existence of a singular flow in three dimensions. On
the other hand we have not explicitly dealt with the finiteness of the dynamical
cocoon, which was needed only to prevent a singularity in the coordinate system
from entering the computational domain. To achieve full consistency we can,
for example, impose an artifical stress-free cylindrical boundary, centered at the
center vortex and of radius %/@*1. Boundary conditions at this outer bound-
ary are then those of a rigid stress-free boundary. Imposing those conditions
would affect our flow by asymptotically negligible amounts as 7 — oo in the
neighborhood of the dynamic cocoon at distances small compared to x~1. The
singularity is thus asymptotically exact even with a proper outer boundary. One
can imagine a procedure of approximation of the exact initial condition for the
blow-up, as follows. With the cocoon imposed let the flow proceed as far into
the singularity as desired. Then remove the cocoon boundary, add a smooth
extension of the outer flow to fill all space, and use this as an initial condition
for a reverse flow. That is, reverse all velocities and run forwards in time for
the same elapsed time as in the approach to the singularity. In this way a se-
quence of approximate initial conditions ug(T") are obtained, representing as k
increases a closer and closer approach to blow-up. Because of the asymptotic
consistency of the construction, we conjecture that this sequence will converge
to a flow which is an example of an initial condition filling 3D space having
bounded, continuous vorticity, producing blow-up in finite time.

A final bit of surgery is needed to eliminate infinite energy in the initial
condition. Note that since only finite stretching is involved in the blow-up, one
can say that only a finite amount of kinetic energy is associated with the fluid
participating in the blow-up. At this point, however, we note that a suitable
value of 7, namely v = (1 + v/19)/9 = .5954..., may be picked so that three
copies of the singularity may be arranged so that the center vortices will match
with the sides of an equilateral triangle. Then in the neighborhood of each
vertex we have a copy of the self-similar singular flow, and finite total energy of
the system of three participating singular regions.

5 Discussion

5.1 General remarks

The thrust of the present paper amounts to the proposition that the present
construction yields an acceptable example of Euler blow-up in three dimensions.
It is acceptable in the sense that only a finite amount of vortex stretching
occurs during the blow-up. Other analytical approaches suffer from the fact
that infinite kinetic energy occurs in the flow comprising the set of singular
points. Such infinite-energy solutions tell us nothing about the behavior of
Euler flows of finite kinetic energy in a bounded domain.

The present part represents the second step toward verification of our propo-
sition. It falls short of a complete verification, even in the weak sense of formal
theoretical fluid dynamics, in that we have utilized a one-dimensional model
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of tube dynamics when in fact the problem is two-dimensional. However the
robustness of 1-D theory for slender vortex tubes of near circular cross section
makes for a stronger case than might be otherwise accepted. There is no indica-
tion that the 2D analysis would go much further that verifying the correctness
of the one-dimensional approximation.

We have also used the asymptotic form of the thin-tube LCB solution rather
than an exact form. The issue of existence of a full family of LCB-like Euler
flows, and the size of this family, is an interesting question in itself, which to
our knowledge has not been answered.

5.2 Stability of the singular flow

We do not consider here in any detail the important question of the stability
of the proposed singular flow. Like most Euler flows, it is likely to be un-
stable. If this were indeed the case, then these singularities are in principle
unobservable even in a perfect fluid, a point that renders computational ap-
proaches of doubtful use. Three-dimensional instability of paired vortices has
been observed experimentally by [Leweke & Williamson (1998)]. The modes of
instability they find appear to have their origin in the three-dimensional el-
liptic instability of 2D vortex cores, see [Pierrehumbert (1986), Bayly (1986)],
which makes the instability sensitive to stretching of the votices. Instability in
the zeroth-order solution here means that the growth is on a time scale t*(7)
such that dt* /dr = 7727, the poser being that needed to make 7 derivatives in
the momentum equation of the same order as the advective acceleration. Thus
t*(r) = 71727, Thus, since v > 1/2, t* — oo as 7 — 0. Thus the instability
has “infinite time” to grow, with complete disruption of the singularity the in-
evitable result. This underscores the importance of looking for the “fixed point
solution”, by which we mean a steady zeroth-order Euler flow together with
independence of the dynamic variables on the logarithmic time scale s.

Associated with the question of instability is the issue of the “density” of
initial conditions producing blow-up in some function space of allowable initial
conditions. On interesting prospect is that both issues may involve the down-
stream x-type neutral (stagnation) point of the paired vortex flow. The outer
streamline boundaries of the closed region are stable manifolds of this neural
point. Any perturbation of the manifolds preserving the volume of the closed
region leads to mixing of fluid interior and exterior to these manifolds. Eventu-
ally these disruptions would extract vorticity from the cores and break up the
pair, see figure 4. The perturbations of the manifold would be introduced by
perturbations of the vortical cores, see figure 4. Note that this is a purely 2D
instability of the zeroth-order flow, and is insensitive to stretching.

The “neutral-point instability” just described would explain the difficulty in
identifying a blow-up initial condition , as follows. Let us introduce a measure
on the set of initial condition defined by the boundaries of the vortical cores.
The singular conditions, i.e. the “fixed point” contours will lie between to circles
centered at the vortex center. Any other simple closed contour around the inner
boundary of this annulus constitutes a possible initial condition when extended
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Figure 4: A possible instability of the zeroth-order solution. Only the upper
vortex is shown.

in our construction along the center vortex. Now there will generally be a set
of fixed point contours, parametrized by the area enclosed. But for each such
area, these is at the very minimum a one (real) parameter family of contours,
given say by taking the maximum excursion radially from the corresponding
fixed point contour. A measure on all contours will therefore leave the fixed-
point contours as measure zero. Thus the contours leading to blow-up in our
construction constitute a set of measure zero in the space of feasible contours.

5.3 The impossibility of the singularity in viscous flows

The important question of singularities of solutions of the Navier-Stokes equa-
tions leads, in the present construction, to a negative result. The question is
intriguing nonetheless, because the viscous term vV?u, which is dominated here
by v(uee + uyy,), has the same order as the acceleration in our zeroth-order so-
lution. However this 2D Navier-Stokes equation can have no steady solution in
finite space. Thus there would have to be evolution on the time scale ¢t* just
introduced. The ultimate exponential decay occuring in the Stokes limit then
translates to super-exponential decay in 7, overwhelming the algebraic growth
associated with the singularity of vorticity.

This conclusion could not be drawn if v were to equal 1/2, but in that case
the Euler singularity cannot occur at least according to the present construc-
tion. Nevertheless we suggest that viscous flows with structure approaching
that of the present Euler flows with v = 1/2 would be able to amplify vorticity
significantly, before saturating and decaying.

5.4 Comparison of this work with the construction of Sig-
gia and Pumir

In [Pumir & Siggia (1990)] a theory of singularity formation based upon self-
stretching of paired vortices is developed. The pioneering construction proposed
by Pumir and Siggia is similar in many respects to the present one. However
there are important differences. In the first place, their proposal corresponds to
our case 7 = 1/2. It is for that reason that both Navier-Stokes and Euler flows
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are considered in [Pumir & Siggia (1990)]. According to [Chae (2006)] this is an
example of self-similarity, where in fact an Euler singularity cannot exist. The
problem one encounters when v = 1/2, as indeed [Pumir & Siggia (1990)] knew,
is that one could not guarantee the integrity of the vortex cores at the singularity
time. For example, paired vortices with radius of curvature k are drawn to
one another in the direction of the binormals with a velocity proportional to
kIn(k/a) where a is a core radius of the vortex. In the present construction
this velocity is O(7771) and is negligible compared to the O(7~7) velocity of
the vortex itself, but in [Pumir & Siggia (1990)] these velocities are comparable,
with the possibility of core deformation as the vortices collide.

The main motivation of the present work is the kinematic singularity pre-
sented in I, and Pumir and Siggia seem to have not been aware of that solution
of the equations of a line moving by the normal. However they do undertake
local analysis of the collapse to the singularity using line vortices, and arrive at a
similar conclusion of formation of a point singularity with finite total stretching.

The research reported in this paper was supported by the National Science
Foundation under KDI grant DMS-0507615 at New York University.

A Contour averaging
The function A(¢,(,t) is the area enclosed by a contour have streamfunction

value ¥(&,m, ¢, t) at a fixed section ¢ = constant of the dynamic cocoon. Using
the contour average (35), we first establish the following properties:

(1) = Ay, (Pc)=—-A¢, (Pr)=—4:. (105)
The first expression follows from
§A = Aydyp = 7{5nds = 51/)7{ g—st = 51/)7{(]51615 = 6(1). (106)

The second (and third) of (105) follow from differentiation of ¢ for fixed v and

S:
o Y on

3ls =0= 5l T ’w (107)
Taking the contour average then gives
0= () + f meds = () + +Ac. (108)
establishing the result. Also we see that
(ve) = (¥y) = 0. (109)

Indeed,
74 (0, v0) Jq0ds = 74 (dz, dy) = (0,0). (110)
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We also observe the following useful identity:

[ [eaa= [¢ae. (111)

This follows from dA = dsdn = dsdi/qq.

The differential operator D = 9; +wd, + q1 - V occurs in the right-hand side
of (32) and we need to compute the contour average of its action on . (Here
and elsewhere we have written 9, for 9y9.) We have, using (105)

(D) = (1) +w(te) + (a1 - Vi),

=—-A, —wA; +7§q1 - nds,

—A; —wAc — //[w(;]gﬂ7 — UkdA. (112)

Using the chain rule and (105) we obtain

//wclgmdA:/<w<!w+¢<]§mw¢’<>d¢,

o(w, A
= /(W;Aw — Aqwy)dyp :/ 8((?1/))) dip. (113)
Combining these,
—(Dy) = /[Aw +wAye + Aywe — UrAy|dy = AyV. (114)
0

We now indicate the derivation of (37) from the contour average of the w-
part of (32). (The derivation of (36) is similar.) Now the terms of F. involving
u’ vanish by (109). The differentiation of w divides by the chain rule into
differentiations at fixed ¢ and w, times differentiations of . The latter are
evaluated in terms of (D). The only term needing discussion is (p¢). We write
p=H — 1q3. Then, as in

//HclgmdA_/%((Ii’lg)dw. (115)

To evaluate (qo - q0’ : n> we observe

V2pdA = HydA = ¢ Vi - nds. (116)
[ [wwia= [ [ras-f

O0Hy, B [ O(Hy, A)
|5 =l = [ Gt )

These results combine to yield (37).

Thus
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B Derivation of the first few terms of the thin-
tube solution

We locate the tube centers at z = +iL/2 in a frame in which they are at
rest. The velocity at infinity is (U,0),U < 0, and the upper vortex has positive

circulation, see figure 6. With our definition of ¥ the complex potential valid in
the irrotational region is

w(z) = ¢(x,y) —ip(z,y) =Uz — % log(z —iL/2) + % log(z +iL/2)

A+iB n A—1iB
z—1iL/2  z+iL/2
Within the upper vortex we take

+0(z72). (118)

Yin = CJo(kr) + (Dcos 0+ Esin)Jy(kr) + F +.... (119)

Here k, A, B, ..., ' are real constants. We assume the boundary of the upper
vortex is given by |z —iL/2| = R+ acosf + [Ssinf + .... Here 6 is the polar
angle with respect to the center of the upper vortex.

Now from (118) we have, near the upper vortex,

r I'(y—L/2 A+iB
Yout = —U(y—L/Z)—UL/Z—i—E In(|z—iL/2|/L)— (y27rL/ )—%Z ——’;L/2 e
(120)
To make v;,, = constant on |z — iL/2| = R + acosf + Bsinf we see that
necessarily Jo(kR) = 0, and take kR as the first zero of this Bessel function. It

then follows that, to lowest order,

I = —27kRCJ,(kR). (121)

Thus, again to lowest order
r
F= or In(R/L) — UL/2. (122)
™

The second-order calculations involve cos 6, sinf. To make 1);,, constant on
the vortex boundary we must have

—CJ1(kR)(acos 6 + Bsin) + (D cosf + Esinf)J, (kR) = 0. (123)

Thus
D=Cua,E=Cp. (124)

To make 1;,, = Yoyt on the vortex boundary to second order, we must have

'Rsin® Bcost) — Asinf

. (12
2nL R 0. (125)

r
—URsinf + ——(acosf + Fsinf) —
2R
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To make ), continuous on the boundary we must have

. T . 'Rsin® Bcost) — Asinf
—URsmH—ﬁ(acosH—l-ﬁsmﬁ)— 5 T 7 =0. (126)
It follows that r
U= E,A:—FB,BZQF, (127)

We see that «, 8 remain arbitrary, but these are perturbations association with
small shifts of the center position of the vortex. We may therefore set A = B =
D=FE=a=03=0, and take |z —iL/2] = R+ agcos 20 4+ (32 sin20 + ..., with

Yin = CJo(kr) + (Dg cos 20 + Eysin20)Jo(kr) + F + .. ., (128)

AN AN
w(z) = Uz — —log(z —iL/2) + — log(z +iL/2)
2T 2m
A2 “+ ’LBQ AQ - 'LB2
(z—iL/2)2 " (2+41iL/2)
Now we have the condition analogous to (123):
—CkJy(kR)(az cos 20 + (B2 sin 20) + (D3 cos 20 + Easin20)J2(kR).  (130)
Thus

s +0(27%). (129)

D2 = Cle(kR)QQ/JQ(kT), E2 = Cle(kR)62/J2(I€T) (131)
Also the streamfunction near the upper vortex is now
_ r : Iy —L/2)
Yout = —U(y— L/2) —UL/2 + 5 In(|z —4iL/2|/L) — 5T
B cos 20 — Ay sin 20
- 2 _(y—L/2)? -2 2 132
Sl — = /2 - T (132

From the jump conditions at the vortex boundary we obtain the following con-
ditions on the terms in cos 26, sin 26:

I'R : : !
I (o2 cos 20 + B2 8in20) — (B2 cos 20 — Az sin26) = 5.2 CO 26, (133)
'R , , R
— (g 0820 + [ sin 20) — 2(Bg cos 20 — Az sin20) = ———— cos26. (134)
27 4 L2
Thus .
3I'R
_ p3/72 _ 3, —
O[Q—R/L,BQ—SWT,AQ—62—O. (135)

The second-order complex potential is therfore
i . i’ .
w(z) =Uz — e log(z —iL/2) + o log(z +4L/2)

v 3TR* ) 3TR*

i —1

8nL?(z —iL/2)? 8nL%(z+iL/2)
and the boundary of the upper vortex is given by

3

R
r=R+ 7z cos 26. (137)

s +0(=7%), (136)
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