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Abstract

Motivated by the issue of singularity formation, we explore here the
rate at which vorticity can grow in Euler flows in three dimensions. In the
present part we focus on axisymmetric flow without swirl, a case known
to exhibit global existence in time in three dimensions. The known, ex-
ponential in time bound on vorticity in this geometry can be improved by
an optimization procedure which takes into account kinematic invariants
of the vorticity field. The optimizing structures naturally yield paired
vortex tubes of opposite sign. If invariance of the vortex topology and
the support volume are imposed, the vorticity grows like t

2. In that case
the optimizing flow does not conserve energy. It is argued that both en-
ergy and support volume can be conserved by optimizing flows involving
filamentary vorticity, with a bound on vorticity which grows as t

4/3.
In preparation for part II we show that paired vortex structures which

conserve volume and/or energy and are antisymmetric with respect to
a plane, but are not restricted by axial symmetry, can produce infinite
vorticity in finite time. In that case the optimizing structure is quasi-
two-dimensional but vortex lines are stretched only a finite amount at
the singularity. The dynamical problem associated with this kinematic
singularity, and the possibility that dynamics will regularize the flow, will
be examined in part II.

1 Introduction

The question of global regularity of three-dimensional solutions of the incom-
pressible Euler equations continues to be of considerable interest to both math-
ematicians and fluid dynamicists. A recent assessment of the problem from
the analytical viewpoint may be found in [Majda & Bertozzi (2002)], see also
[Constantin (2004)] and [Frisch et al. (2003)]. Numerical studies have been dif-
ficult, occasionally suggestive of finite time singularities, but inconclusive. Ana-
lytical studies have been highlighted by the key condition of [Beale, Kato & Majda (1984)],
who showed that if a finite time singularity occurs, the integral of the maximum
modulus of vorticity up to the singularity time must diverge. (For the proof,
other similar conditions, and critical comment see [Majda & Bertozzi (2002)].)
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[Constantin et al. (1996)] subsequently extended the conditions to the geome-
try of the vorticity field, and specifically to the direction field of unit tangent
vectors to vortex lines. Recently [Deng et al.(2004)] have used similar ideas to
argue non-existence of singularities in some of the numerical experiments.

The present paper is motivated by several “working hypotheses” concerning
Euler flows. First, the lack of convincing numerical experiments, as well as
physical intuition, suggest that finite time Euler singularities are rare events in
the context of the initial-value problem for Euler’s equations.

Working hypothesis 1 Almost all Euler flows are free of finite time singular-
ities.

That is, if a suitable measurable space of smooth initial conditions is given,
those initial conditions leading to singularities should constitute a set of measure
zero.1 Should a singular solution exist, if this hypothesis were true, it would be
unimportant physically in that solutions with nearby initial conditions would
in general be free of singularities. In this sense WH1 would imply that any
singular solution would be unstable, and hence essentially “invisible” to a direct
numerical solution of the initial-value problem.

The intuitive reason for this view lies in the non-local nature of the mutual
stretching of vortex lines which seems to be needed in order promote a finite
time blowup. Let vortex element A act on vortex element B so that lines of B
are stretched at a rate proportional to the vorticity at A. The idea is then for B
to do the same to A, so that the time rate of change of vorticity in either element
is proportional to the vorticity squared, leading to blowup of vorticity ( e.e. like
1/(t∗−t)γ , γ ≥ 1. We suggest that such a construct, if indeed obtainable, would
be highly unstable to the slightest perturbation of the vortex lines and is likely
to represent a negligible set of Euler flows as suggested above.

Working hypothesis 2 The maximal growth rate of vorticity in almost all
Euler flows, inclinthose which blow up in finite time, can be estimated from
flows whose vortex lines have a relatively simple topology, for example, from
flows all of whose vortex lines are simple closed, unlinked loops (unknots).

In [Constantin et al. (1996)] it is shown that the direction field of vorticity
cannot be too regular if a finite time singularity occurs. Here we shift the focus,
and instead attempt to estimate the maximum growth achieved in flows of simple
topology. We say a solenoidal field ω0(x) is flow-equivalent to a solenoidal field
ωT (x) if there a positive number T and a solenoidal smooth solenoidal field
u(x, t), 0 ≤ t ≤ T such that the solution ω(x, t) of

ωt + u · ∇ω − ω · ∇u = 0,∇ · ω = 0, 0 ≤ t ≤ T (1)

has the property that ω(x, 0) = ω0(x), ω(x, T ) = ωT (x). That is, the vorticity
fields ω0, ωT are flow equivalent if ωT is reached from ω0 by carrying ω as a

1A simple example of a such a measurable space would be spatially periodic flows with

sufficiently rapid convergence of the Fourier sums.
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‘frozen in” vector field under the action of the flow u. The Lagrangian map
determined by u, 0 ≤ t ≤ T , establishes ωT as the image of ω0 under a diffeo-
morphism. The velocity fields corresponding to these two vorticity fields are
said to be isovortical ( [Arnold & Khesin (1991)]).

The class of initial vorticity fields we propose to explore in the present pa-
per are those which are flow equivalent to axisymmetric flow without swirl.
Axisymmetric flow with swirl has often been put forward as candidate for singu-
larities, as has the related problem of 2D, stratified, incompressible flow under
the Boussinesq approximation , see [Majda & Bertozzi (2002)].

Velocity fields which are isovortical to axisymmetric flow without swirl can
have enormous complexity, yet they have the simple topology of our second
hypothesis– every vortex line is a closed loop linking with no other vortex loop.
But it is fair to ask why a simple topology is of any use if the velocity field can
be so complex. In the present paper we shall utilize the topology explicitly in
the rearrangement of vorticity, in the quest for maximal vortex stretching. Re-
arrangments of vorticity can be attempted under varying constraints, kinematic,
dynamical, or energetic, without attempting to solve Euler’s equations exactly,
and this flexibility can be exploited most directly if topological constraints are
eliminated from the outset.

We shall focus primarily on the simplest of these flows, namely axisym-
metric flow without swirl itself. Any axisymmetric flow having no swirl is
known to exist globally in time, and a very direct proof of this fact is given
in [Majda & Bertozzi (2002)]. We deal here only with flows in R3, and give the
proof in detail, since it is a principal motivator for our work.

The proof utilizes, in a way which will be clear below, two essential facts,
the first for Euler flows in general, the second for axisymmetric flow without
swirl in particular: (1) Since vorticity is a “frozen in” vector field, the volume
of its support is conserved in time. (2) r−1ωθ(x, t) is a material invariant of the
flow, where r = (x2 + y2)1/2 is the cylindrical polar radius. Thus, the vorticity
associated with with any vortex line (ring) at time t, can be directly expressed
in terms of the current radius of the ring, its initial radius, and the initial ωθ.

In these axisymmetric flows without swirl flow the vorticity is (0, 0, ωθ) in
cylindrical polar (z, r, θ) coordinates, and the velocity has the form (uz, ur, 0).
Let the initial vortical field ωθ0(z, r) be smooth, bounded, and and supported
on a region of volume finite V0. It follows that the support of the vorticity at
any future time has volume V0. We further assume |r−1ωθ0(z, r)| < C on its
initial support.

We can then estimate max (|u|) over all space as follows: using the Biot-
Savart representation of the velocity in terms of vorticity,

max (|u|) ≤
∣

∣

∣

1

4π

∫

|y|≤R0

y × ω′

y3
dV ′

∣

∣

∣
+

∣

∣

∣

1

4π

∫

|y|≥R0

y × ω′

y3
dV ′

∣

∣

∣
,y = x− x′.

(2)
Clearly

max (|u|) ≤ max
supp

(|ωθ(z, r, t)|)[4πR0 + V0R
−2
0 ]. (3)
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If we set R3
0 = V0, we get max (|u|) ≤ c1 maxsupp |ω|, where c1 = (1 + 4π)R0.

Now in this Euler flow

ωθ(z, r, t)/r = ωθ(r0, z0, 0)/r0, (4)

where (z, r) and is the terminal point of a fluid particle which started at (z0, r0).
Now let R(t) be the radius of the support at time t. Then we have

dR/dt ≤ max(u) ≤ c1 max
supp

(ωθ) ≤ Cc1R. (5)

By Grönwall’s lemma, the radius of the support, hence the maximum vorticity,
grows at most exponentially in time.

The proof thus uses the Biot-Savart law, the fixed support volume of the
vorticity, and the fact that for a given ring ωθ is proportional to its distance
from the common axis. However it does not use the following observation: as
the vorticity grows, rings must expand, and the only way to keep stretching
active is to put the vorticity into a toroidal configuration near a “target” ring
which is growing maximally. We call this optimizing arrangement of vorticity a
kinematic cocoon.2

In the next section we examine next how this exponential estimate can be
improved by a more detailed tracking of the material invariant based upon this
last observation. In seeking to lower the bound on the rate of growth, our
interest is in the symmetric flow as a test case for reduction of estimates of
vortex stretching as kinematic constraints are added to the problem. We shall
also consider the conservation of energy as an auxiliary constraint, and show
that it should lower reduce the bound on vorticity further, to growth like t4/3.

In Section 3 we relax the restriction to axisymmetric flow without swirl, and
consider a paired quasi-two-dimensional vortex structure with a fixed plane of
antisymmetry. The flow in each cross section is that of a “Batchelor couple”,
and so is locally invariant in a moving frame. The motion duplicates that of
the cocoon of constant volume. From the intrinsic equations of motion of this
structure we exhibit a solution which is singular in finite time, with finite total
stretching. Although the solution is consistent only in its kinematics, and does
not account for the development of axial flow, it shows that one cannot rule out
singularity formation purely on the basis of the kinematics of vortex tubes. The
analysis and computation of such solutions, as candidates for singularities in
Euler, was considered by [Pumir & Siggia (1987)]. In part II we explore the as-
sociated dynamical problem using quasi-two-dimensional analysis and dynamic
compatibility under contour averaging.

2 Axisymmetric flow without swirl

Let the initial vorticity have an initial support of volume V0, i.e. the points where
vorticity is non-zero constitute a volume V0. Suppose that −c1 ≤ ωθ(x, 0) ≤ c2

2I thank Peter Constantin for suggesting the evocative term “cocoon”.
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for some positive constants c1, c2, and let the region of the support where ωθ ≥ 0
have volume V0+, that where ωθ < 0 have volume V0− = V0 − V0+. We suppose
that r−1|ωθ(x, 0)| ≤ C.

2.1 Construction of the cocoon with conservation of sup-

port volume

Consider any vortex ring at time t. Taking the z axis as the axis of symmetry,
we may assume the ring has radius r at time t, and lie on the plane z = 0. We
refer to this ring as the core ring. Let V/2 = max(V+0 , V0−). It is clear that to
maximize the rate of growth at time t of the ring in question, we can take rings
of negative vorticity ωθ = −Cr distributed over a volume V/2 in z ≥ 0, and
rings of positive vorticity ωθ = +Cr distributed over a volume V/2 in z ≤ 0.
Note that θ increases counterclockwise looking onto the x, y plane from z > 0,
so by the right-hand-rule a negative ωθ in z > 0 induces a positive ur (and a
negative uz) at the core ring.

Consider now the value of ur induced at the core ring by a ring of radius
ρ and cross-sectional area 2πρdA carrying vorticity −Cρ at height z = ζ > 0.
From the Biot-Savart law one finds

ur(r, 0, t) ≤
Cρ2|ζ|

4π

[

∫ +π

−π

((r − ρ)2 + 2rρ(1 − cosψ) + ζ2)−3/2dψ
]

dA (6)

Since 1−cosψ ≥ k2ψ2, ; |ψ| ≤ π, k =
√

2/π, we may make this substitution and
carry out the integral with the range extended from [−π,+π] to [−∞,+∞], to
obtain

ur(r, 0, t) ≤
C|ζ|ρ3/2

4
√
r

((r − ρ)2 + ζ2)−1dA (7)

We now want to optimize an arrangement of rings about the core ring which,
by carrying the maximal vorticity of each sign in the appropriate half plane, will
clearly be causing the maximal possible stretching of the core ring, subject only
to the constraint on the volume of the support. The optimal configuration is
the cocoon of the core ring. In order to make the variational problem the most
transparent possible, we make a few technical simplifications.

We introduce local polar coordinates in the r, z plane, defined by ρ − r =
R cos Θ, ζ = R sin Θ. Then, since

ur ≤ C| sinΘ|(r +R cos Θ)3/2dRdΘ

4
√
r

≤ C

4
| sinΘ|(r + R cos Θ)(1 + R/r)1/2dRdΘ, (8)

we seek to maximize

U =

∫

A
f(R,Θ)dRdΘ, f =

C

4
| sin Θ|(r +R cos Θ)(1 + R/r)1/2, (9)

5



subject to the volume constraint

V =

∫

A
g(R,Θ)dRdΘ, g = 2π(r +R cosΘ)R. (10)

Here A is a set to be determined. We may assume by symmetry that A is mirror
symmetric in the plane z = 0, since the vorticity field of the cocoon is odd in
z. Also, we may assume that the core ring radius is as large as we like when we
begin the tracking of the cocoon, since otherwise vorticity is bounded by a fixed
constant for all time. In addition, we need the following preliminary result:

Lemma 1 We may assume that the half A− of A in z ≥ 0 is a region of the
form 0 ≤ R ≤ R(Θ), 0 ≤ Θ ≤ π. That is, the region can be assumed to be
starlike with respect to the core ring.

To show this, suppose that Θ is fixed and note that the intersection of A
with the ray determined by Θ determines a set function φ(R) equal to 1 in A
and otherwise 0. Consider then two choices of φ, either φ1 : 0 ≤ R ≤ R, or else
a set of disjoint intervals φ2, such that

∫ ∞

0

φ2gdR =

∫ ∞

0

φ1gdR. (11)

We then want to show that
∫ ∞

0

φ2fdR >

∫ ∞

0

φ1fdR. (12)

But this follows immediately from the fact that f, g are positive functions on the
support of φ1,2 and that and f/g is a positive multiple of a decreasing function
of R, namely (1/R2 + 1/(Rr))1/2.

Using the lemma, and the mirror symmetry of the cocoon, we may formulate
the optimization problem as the variational problem for the boundary R(Θ), 0 ≤
Θ ≤ π, given by

δ

∫ π

0

∫ R

0

(

f(R,Θ) − λg(R,Θ)
)

dRΘ, (13)

with scalar multiplier λ.
The extremal of this variational problem, R(θ, satisfies

(r + R cos Θ)
(

K sin Θ
√

1 + R/r −R/r
)

= 0, (14)

where K = C
8πλr . If r is sufficiently large, r + R cosΘ) stays nonnegative and

the unique extremal is

R(Θ) = r

√

K2 sin2 Θ +
K4 sin4 Θ

4
+
K2 sin2 Θ

2
, (15)
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The variational equation R2 = r2K2 sin2 Θ(1 + R/r) yields the volume con-
straint which determines K:

V = 2πr3
∫ π

0

K2 sin2 Θ(1 + R(Θ)/r)dΘ. (16)

Now in view of (15) we see min0<Θ<π r+R cos Θ ceases to be positive when
Let us introduce a length L such that V = 2πL3. Then the integral (16)

defines a function K(r∗), where r∗ = r/L. From (15) and the calculated values
of K(r∗) we find that min0<Θ<π r + R cos Θ ceases to be positive when r∗ <
.5177 approximately We thus obtain, taking into account both mirror-symmetric
halves of the cocoon, for r∗ > .5177, the differential inequality

dr∗
dt

≤ supU ≤ CLr∗2

3

∫ π

0

sinΘ
[(

1 +
R
r

)3/2 − 1
]

dΘ ≡ CLr∗2

3
U(r∗), (17)

where we define the function U(r∗). We show this relation in figure 1, along
with the cocoons at various values of r/L.

From the behavior for large r/L (or smallK), we obtain from (16)K ∼
√

V
πr3/2 ,

and from (17) dr/dt ≤ CKπr2

4 , yielding the estimate

dr

dt
≤ C

4

√
V r, r → ∞. (18)

Thus d
√
r/dt ∼≤ C

8

√
V for large r. With |ωθ(r, z, t)| ≤ Cr we obtain the

following result:

Theorem 1 For axisymmetric flow with initial support volume V and initial
vorticity satisfying |ωθ/r| ≤ C, there is a constant C1 depending only upon V, C
such that

sup |ωθ| ≤ C(
C

8

√
V t+ C1)

2. (19)

Thus vorticity grows no faster than O(t2) for large time.

To establish the theorem, we may assume that at time t = 0 the core ring
is at a position such that the cocoon satisfies min0≤Θ≤π [r+R cos Θ] ≥ 0. Thus
dr/dt is bounded by the curve shown at the top of figure 1, with the asymptotic
behavior given by (18), and the theorem follows.

2.2 Remarks

We note first that the factor C/8 in (19) maybe replaced by C/(4π). This is
because if only the case r � |r−ρ| is considered for (6), the factor 2(1−cosψ) in
the integrand may be replaced by ψ2 and the integration extended to −∞,+∞,
effectively inserting a factor 2/π.

While the construction of the cocoon is based upon geometric constraints as-
sociated with Euler flows, it is a local construction (in time) which has no direct
relation to the evolution of the flow. Thus, for example, the core ring is here a
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Figure 1: Top: 3
CL2

dr
dt

(as defined by (17)) versus r/L. Bottom: Cocoon shape
for various position of the core ring. The cocoon is mirror symmetric with
respect to the r/L line.
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Figure 2: Expanding vortex structure yields the t2 behavior.

“test ring” whose expansion rate in r is maximized. In the construction, cocoon
vorticity is in fact placed at larger values of r. In practice the most rapidly
growing ring would leave vorticity behind, and there would be a arrangement
of rings which expanding at a rate well below our upper bound.

This can be illustrated by adapting a well-known example of a propagating
vortex dipole, namely the 2D vortex structure described by [Batchelor (1967)].
We term this structure the “Batchelor couple”. The vorticity is contained within
the circle r = a, and is given by ω = −Ak2J1(kρ) sin θ, where A is an arbitrary
constant, and J1(ak) = 0. Here (ρ, θ) are local polar coordinates. We take the
smallest ak satisfying the last condition, namely ak = 3.83 approximately, to
obtain one sign of vorticity in each half-plane. On r = a the velocity is the
same as for irrotational flow past a circular cylinder, provided that the cylinder
moves with speed U = −1

2AkJ0(ka).
We now take this flow as that of any cross section of a slender toroidal ring,

see figure 2. As the ring expands, a must diminish to conserve volume, but we
may consider this as a better approximation to a dynamically consistent Euler
flow than the kinematic cocoon of figure 1. Now 2πr · πa2 = V

C =
Ak2

r
max

0≤ρ≤a
|J1(kρ)|. (20)

From these relations and the properties of the Bessel functions J0, J1 we obtain

U ≈ .02C
√

(V r), (21)

the factor .02 is indeed well below the 1/(2π) in our bound.
The cocoon based upon conservation of support of vorticity (as well as the

toroidal ring construction just described) is deficient in another important as-
pect, namely it does not conserve the kinetic energy of the flow. Thus it cannot
be sharp for Euler flows.

To see this, recall that the kinetic energy of an axisymmetric vortical field
in R3 in a flow without swirl can be expressed in terms of vorticity in the form

E0 =
ρ

8π

∫

V

∫

V ′

|r− r′|−1ωθω
′
θiθ · iθ′dV dV ′. (22)
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This can be expressed in cylindrical polar coordinates as

E0 =
−ρ
8π

∫

V

∫

V ′

ωθω
′
θ cosψ|(r+r′))2−4rr′ sin2(ψ/2)+(z−z′)2|−1/2r′dr′dθ′dz′rdrdθdz,

(23)
where ψ = θ − θ′. When r, r′ � |r − r′| the integral with respect to θ′ may be
evaluated approximately as a complete elliptic integral, yielding

E0 ≈ ρ

2

∫

V

∫

V ′

rωθω
′
θ log

64r2

(r − r′)2 + (z − z′)2
dr′dz′drdz. (24)

We now study a configuration for our cocoon, where vorticity is −Cr in the
upper half-plane, and +Cr negative in the lower. Then

E0 ≈ ρC2r3

2

∫

A0

∫

A′

0

sgn(zz′) log
64r2

(r − r′)2 + (z − z′)2
drdzdr′dz′. (25)

Assuming now that the support of vorticity is an even function of z, wee see that
the contribution log 64r2 from the integrand will not contribute. As r → ∞,
the linear dimension of the cocoon cross section shrinks by the factor r−1/2, so
we see that E0 grows linearly in r.

It is natural then, to seek to improve (19) by adding the constraint of con-
servation of energy to the cocoon construction. We shall argue below that for
the construction used above, where vorticity is replaced by its upper bound,
and the cocoon has piecewise constant ωθ/r, that this leads to degenerate co-
coons with infinitesimal concentrations of vorticity which carry no energy. We
shall refer to these concentrations as filaments This suggests that, at least in
axisymmetric flow without swirl which in fact consists of domains where ωθ/r is
piecewise constant, the largest vorticity for large time is found in regular struc-
tures which conserve energy but not the support of vorticity. We will eventually
be guided by this result in addressing all Euler flows isovortical to axisymmetric
flow without swirl, and so introduce

Working hypothesis 3 An improved bound of vorticity, relative to that for
the cocoon of invariant support, is obtained by the cocoon of invariant kinetic
energy. This cocoon may be extended so as to also conserve the support of
vorticity, either by the addition of filamentary vorticity, or else by extending the
admissible vortical fields. In the case of axisymmetric flow without swirl, this
would be accomplished by allowing vortical distributions with non-constant ωθ/r.

In our brief tudy of this issue, we shall not attempt the same level of rigor as
we sought in the construction of the cocoon conserving support. We may assume
that r becomes as large as we want and therefore we may restrict attention to
r � L where the cocoon construction involves a thin toroidal structure. For
axisymmetric flow without swirl and cocoons of piecewise constant ωθ/r, we
will first determine the regular cocoon conserving energy, then indicate the
filamented extension which conserves support as well. Finally we shall argue for

10



the validity of this extremal from upon a model problem based upon a thin-sheet
approximation.

Incidentally, we are not aware of numerical studies of vorticity growth by
paired vortex structures, which might suggest the effect of energy conservation
on an initial structure like a toroidal Batchelor dipole (but see the discussion of
this point in [Pumir & Siggia (1987)]). The cocoon construction described next
suggests the existence of a “tail”, but does not necessarily produce a physically
relevant model. A experiment involving a “paired smoke rings” emerging from
a cylindical slot would perhaps be revealing.

2.3 The cocoon which conserves energy

While the support of vorticity is independent of the magnitude of the vorticity
on each ring, the energy is not, and we first argue that the cocoon may again be
constructed by considering a structure with vorticity ±Cr. Let us first suppose
that a cocoon has been found which maximizes U for a fixed energy initial E0,
with |ωθ| ≤ rC. This extremal maximizes Ur3/2/

√

E/ρ. If, at the optimum,
vortex rings in z > 0 carry vorticity −Cr and those in z < 0 have −Cr, then we
call E0 = Ec the cocoon energy. Otherwise, the value of U so obtained will be
smaller than that obtained by assigning vorticity −Cr to every ring above the
core ring, and +Cr to every ring below the core ring. This new structure will
have a larger energy than E0, since the previous distribution was optimal, and
this now defines the cocoon energy Ec. The cocoon energy will be conserved in
the dependence of the cocoon upon r. This is because once r � V 1/3 the cocoon
is defined locally and shrinks through self-similar structure, being simply scaled
down by the linear factor r−3/4 as r increases.

Now this new U is bounded above by that value obtained by maximizing U
subject to E = Ec and vorticity ±Cr. That is, this last optimization replaces
the boundary of the first extremal by a new one. For this latter construction we
are essentially returned to the construction with fixed support, only that now
energy of the system replaces volume as the conserved quantity. The energy
involved is now cocoon energy, which is larger in general than physical energy.

We now claim that a the result analogous to lemma 1, allowing the admissi-
ble cocoons of the form R = R(θ), holds under energy conservation. The proof
compares small vorticity elements in the local cocoon cross section. Let a small
element dA of the cross section be located at (R1, θ), and a second element,
mirror symmetric with respect to z = 0 with the first be selected at (R1,−θ).
Now let these elements be moved to (R2, θ) and (R2,−θ) respectively, where
R2 < R1. The positive“self-energy” of the two elements is unchanged by this
shift, but the “interaction energy”, which is here negative owing to the signs of
the vorticity, is enhance, i.e. becomes more negative, since logR−1

2 > logR−1
1 .

Consequently, to maximize Ur3/2√
E/ρ

subject to E = Ec we may assume the geom-

etry of the lemma.
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Figure 3: The upper boundary of the optimal cocoon under the constraint of
constant energy.

Our variational problem is thus to maximize, by varying the boundary R(θ),

rC

4

∫ 2π

0

| sin θ|R(θ)dθ, (26)

subject to a fixed cocoon energy Ec. The Euler-Lagrange equation is thus found
to be

rC

4
| sin θ| + ν

2
C2r3R(θ)

∫ 2π

0

sgn(sinφ)F(R(θ), R(φ), θ− φ)dφ, (27)

where

F(x, y, ψ) =
1

2
y2 log(x2 + y2 − 2xy cosψ) − xy cosψ − 1

2
y2

−1

2
x2 cos 2ψ log

x2 + y2 − 2xy cosψ

x2
+ x2 sin 2ψ tan−1

(y − x cosψ

x sinψ

)

+x2 sin 2ψ tan−1(cotψ) (28)

Here ν is the Lagrange multiplier. We may write this as

| sin θ| + b

∫ 2π

0

sgn(sinφ)F(R(θ), R(φ), θ − φ)dφ, (29)

where b is a new multiplier. We may make a substitution R → AR where A is
chosen to make R(π/2) = 1. (Note that the contributions from the logarithm
vanish. We solved the resulting system for R(θ using the MATLAB routine
FSOLVE, assuming symmetry in both the horizontal and the vertical. The
result is shown in Figure 3.

Computing the energy for this system as E0 = ρC3r
4 A4IE , and U = rCA

4 IU ,
we find IE ≈ 4.24 and IU ≈ 3.77 giving

U ≈ .93(Ec/ρ)
1/4

√
C r1/4. (30)

Thus we are lead to propose
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Theorem 2 The cocoon which conserves kinetic energy yields the improved
bound for axisymmetric flow without swirl, for large t, given by

max |ωθ| ≤ C(C1
Ec

ρ

1/4√
Ct+ C2)

4/3, (31)

where C1 ≈ .7.

The cocoon energy is defined here by an imagined optimization problem.
An acceptable value of Ec, insuring the bound of theorem 2 can be found by
simply computing the energy of the support-conserving cocoon at some value
of r for which the latter is defined. Since this cocoon is found by a different
optimization problem, the energy so obtained will in general be larger than the
optimal cocoon energy.

2.4 The filamented cocoon

Since the linear dimension of the cocoon cross section now goes as r−3/4, thereby
conserving energy, the vorticity support volume decreases with r like r−1/2. This
missing vorticity is not accounted for in the cocoon construction at fixed energy.

The natural next step is therefore to constrain the cocoon by both support
volume and energy. However, we propose here (and this is the motivation for
our third working hypothesis) that this doubly constrained cocoon does not
yield a better bound that the cocoon conserving energy alone. The reason is
that as r → ∞, vorticity carrying O(1) support volume but zero energy can be
deposited in rings arbitrarily close to the plane z = 0 containing the core ring.
That is to say, in the limit of large r the doubly constrained cocoon is unique, in
the sense that arbitrarily nearby bounds are obtained by many extremal, which
differ only in the vorticity arbitrarily close to the plane z = 0.

This description must be viewed as asymptotic for large r. A significant frac-
tion of the volume (and energy!) can be “left behind” as the energy-conserving
cocoon expands. An example of a filamented is an energy-constrained cocoon
having volume Kcr

−1/2 plus the following vorticity distribution: Let r = rc be

the radius of the core ring. Then for r1 < r < rc − kr
−3/4
c

ωθ =

{−Cr, for 0 < z < 1
8π
Kcr

−5/2,

+Cr, for − 1
8πKcr

−5/2 < z < 0.
(32)

Here k is a constant yielding the left intersection of the cocoon with the plane

z = 0. The cocoon volume is Vc satisfies dVc/dt = −1
2Kcr

−3/2
c drc/dt. The

flux of volume aft of the cocoon is then −2πrcHdrc/dt where H is the filament
thickness, see Figure 4. Equating these we get H = O(r−5/2). Then volume
it then being added to the filament at the rate it is being lost by the cocoon.
The filament contributes negligibly to both U and to the cocoon energy, so the
estimate of theorem 2 remains.
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Figure 4: Example of a filamented cocoon with lost support volume extending
aft of a cocoon advancing to the right.

2.5 A doubly constrained cocoon in a thin-layer model

The doubly-constrained cocoon is difficult to analyze explicitly in axisymmetric
flow without swirl. In the present section we introduce a model where it can
be treated fairly directly. The model depends upon the adoption of a thin-layer
approximation. This approximation is distinct from thin-layer Euler dynamics,
which is equivalent to an inviscid version of Prandtl’s boundary-layer equations.
Rather, we regard the layer as geometrically thin for the purpose of construction
of the cocoon and calculation of the energy, but otherwise disregard thinness,
in particular in the calculation of U . We shall see below that an optimal cocoon
constructed within the model is not geometrically thin, so the model is not
consistent as an asymptotic theory. It is simply a model problem where the
dual constraints of volume and energy can be studied simultaneously.

We shall consider only the asymptotic cocoon for large r, so the analysis is
local and two-dimensional. We show in the appendix that if ωθ/r = −C in the
2D layer 0 < y < Y (x), where −L < x < L (we assume symmetry with respect
to x = 0), and equals C in the layer obtained by reflection in y = 0, then the
energy of thin year is given approximately by

Ec =
2πρC2r3

3

∫ L

−L

Y 3(x)dx. (33)

For the thin layer our volume constraint is now

V0 = 4πr

∫ L

−L

Y (x)dx, (34)

and we wish to maximize

U =
Cr

4

∫ L

−L

log
[x2 + Y 2

x2

]

dx. (35)
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We first consider maximization of U subject only to the energy constraint,
disregarding the volume constraint. Variation of y1, y2 separately yields the
Euler-Lagrange equations

Y

x2 + Y 2
= bY 2, (36)

where b is a multiplier. We now represent the cocoon boundary as x ± X(y)
where

X(y) =
√

b−1y−1 − y2, 0 < y < b−1/3. (37)

Thus L = ∞. To satisfy the energy constraint we note that now

Ec = 2πρC2r3
∫

A0/2

y2dxdy = πρC2r3
∫ b−1/3

0

y2X(y)dy

= πb−4/3ρC2r3IE , IE =

∫ 1

0

z3/2
√

1 − z3dz ≈ .28. (38)

Thus the constraint is satisfied by making b proportional to r9/4. This implies
that the vortical domain is actually O(r−3/4) × O(r−3/4) in dimension. This
does not define a thin domain, so the result is not consistent with the slenderness
we built into the model. This result is however entirely analogous to that of
section 3.

We note that for this extremal

U =
Crb−1/3

2
IU , IU =

∫ 1

0

tan−1(z−3/2
√

1 − z3)dz ≈ 1.12. (39)

Eliminating b from the expressions for E0 and U ,

U = 2−1(2π)−1/4(Ec/ρ)
1/4

√
CIUI

−1/4
E r1/4 ≈ .49(Ec/ρ)

1/4
√
C r1/4. (40)

Thus we again get a bound on vorticity as in theorem 2.
We next consider constraints on both volume and energy, leading to the

equation

Y

x2 + Y 2
= a+ bY 2, (41)

involving the additional multiplier a. We want to show that the acceptable Y
so defined cannot satisfy both energy and volume constraints simultaneously.
We now have

X(y) =
√

y/(a + by2) − y2 . (42)

Here a, b > 0 and 0 < y < ym where ym is the unique positive zero of X(y). We
then have

V0 = 8πrb−2/3

∫ zm(λ)

0

√

z/(λ+ z2) − z2dz, (43)
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Ec = 4πρC2r3b−4/3

∫ zm(λ)

0

z2
√

z/(λ + z2) − z2dz, (44)

where zm = ymb
1/3ym and λ = ab−1/3. For large r and fixed E0, V0, λ, we see

that we cannot choose λ, b to satisfy both constraints. The same conclusion
is reached when λ is taken as small or large compared to 1. We conclude
that we do not find an acceptable extremal preserving both volume and energy.
Nevertheless, volume conservation can again be viewed as satisfied by enlarging
the admissible configurations to include filaments which are extensions of either
or both of the “tails” of the cocoon.

3 Kinematics of a singular flow

We now depart of our study of axisymmetric flow without swirl and examine
how the optimizing cocoon would be stretched as a three-dimensional structure
if its motion conformed to the variation of radial velocity with radius, where now
we deal with a local radius of curvature. Ignoring detailed dynamics, for the
cocoon of constant volume we know that the outward propagation speed goes
as the square root of the Jacobian and that the local 2D dynamics is consistent
(but sub-optimal) in the case of a Batchelor couple. For the cocoon of constant
energy we have the fourth root of the Jacobian. But in the latter case we do not
have any consistent 2D structure. In actuality paired vorticies in axisymmetic
flow without swirl , moving out as we have imagined, must in some way deform
to maintain the kinetic energy, a time-dependent process which might involve
the shedding off of vorticity as in the filaments introduced above.

3.1 Motion of a planar curve by the normal

We consider a planar curve C(t) having arclength ζ. Let ζ0 be a Lagrangian
coordinate of the curve, and suppose that the curve moves in the plane according
to the law,

∂x

∂t

∣

∣

ζ0
= u(ζ0, t)n + w(ζ0, t)t, (45)

where (n,b, t) is the orthonormal triad of normal, tangent, and binormal vectors
to the curve. As is well known, the equations of motion of the curve can be
expressed for given u, w as a pair of equations for the Jacobian = ∂ζ

∂ζ0
(ζ0, t) and

the curvature κ(ζ,t):
∂J

∂t

∣

∣

∣

ζ0

= wζJ − Juκ, (46)

∂κ

∂t

∣

∣

∣

ζ0

− wκζ − κ2u− uζζ = 0. (47)

Note that it is derivatives in ζ, not ζ0, which occur in (47). The two terms on
the right of (46) we may call, in order, the shear stretching and the expansive
stretching terms.
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3.2 The kinematic cocoon

Our object here is to simulate the motion of the core vortex of a kinematic
cocoon which conserves volume. We assume henceforth that w = 0. To mimic
the motion of the kinematic cocoons we may set

J = α′(ζ0)u
β . (48)

Note β = 2 is appropriate to the kinematic cocoon of constant volume. Then
the equations may be reduced to the following equation for u:

utt + (β − 2)
u2

t

u
+

u2

βα′(ζ0)(−u)β

∂

∂ζ0

1

α′(ζ0)(−u)β

∂u

∂ζ0
= 0. (49)

We consider here only solutions of (49) having the similarity form

u = −τ−γAg(σ)), σ = α(ζ0)τ
−µ, (50)

Here A is an arbitrary constant, and

τ = −t, t < 0. (51)

The time of the singularity is here stipulated to be t = 0. Substituting (50) into
(49) we obtain a solution if

µ = (β − 1)γ + 1. (52)

The equation for g can then be integrated once. Applying the conditions g(0) =
1 (given the arbitrary constant A), and g′(0) = 0 (a symmetry condition), we
obtain the following equation for g:

µγσgβ−1 + σ2µ2gβ−2g′ +
1

βA2β−2

g′

gβ
= 0. (53)

A second integration gives

µβA2β−2σ2g
2µ
γ + g

2
γ = 1. (54)

Let us regard C as oriented to that at σ = 0, t points in the direction of the
positive x-axis. We define θ as the angle made by t with the z-axis, so that
κ = ∂θ

∂ζ . Then

∂θ

∂σ
= −Aβ−1 [gβ−1γ + µσgβ−2g′] = 0. (55)

and so, from (53)

θ = −A1−βµ−1

∫

g−βσ−1dg. (56)

Here, from (54),

σ =
A1−β

√
µβ

g−µ/γ
√

1 − g2/γ . (57)
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So

θ = γ

√

β

µ

[π

2
− sin−1(g1/γ)

]

. (58)

To sketch the curve, we suppose the point σ = 0 lies at the origin in the
(z, x) plane with the tangent at that point pointing toward positive z. Then we
find

A−1τγ−1(z, x) =
1√
µβ

g
√

g−2/γ − 1[cos θ(g), sin θ(g)]

+

√

β

µ

∫ 1

g

√

g−2/γ − 1[cos θ(g), sin θ(g)]dg

+µ−1

∫ 1

g

[sin θ(g),− cos θ(g)]dg. (59)

We see from (54) that g → 0 as σ → ∞, and from (58) that

θ → γπ

2

√

β

µ
≡ θ∞, σ → ∞. (60)

We will be using below the case β = 2. Taking this value and requiring that
θ∞ = π/3 we find γ = 1

9(1+
√

19) = .5954. As we shall see, it will be important
for us that we take γ > 1/2. We show in figure 1 the shape of C for β = 2, γ =
1
9
(1 +

√
19). When γ = 1/2, θ∞ ≈ 52o. Since θ∞ = π/2 when γ = 1, we restrict

this parameter to the interval (1/2, 1).
To study the distribution of stretching along C with β = 2, we observe from

(54) that

g = [
√

2(1 + γ)Aσ]−
γ

1+γ +O(σ− 2+γ
1+γ ), σ → ∞. (61)

Thus the total amount of stretching at time t for the Lagrangian point in the
interval (0, ζ0) is

S(ζ0) = τ1−γ

∫ σ

0

g2(s)ds = τ1−γ

∫ σ

0

(

g2(s) − cσ− 2γ
1+γ

)

ds+
1 + γ

1 − γ
cα

1+γ
1−γ (ζ0),

where c = [2(1 + γ)A2]−
2γ

1+γ ,

∼ τ1−γ

∫ σ

0

g2(s)ds = τ1−γ

∫ ∞

0

(

g2(s) − cσ− 2γ
1+γ

)

ds+
1 + γ

1 − γ
cα

1+γ
1−γ (ζ0) (62)

for large σ. We thus see from (62) that between some time t = t0 < 0 and
t = 0 the total stretching of C is finite. As time approaches 0 the stretching
concentrates at the tip of the structure and tends to zero as the curvature tends
to zero at the distant parts of the curve.

To understand the movement of C uniformly in ζ0 it is helpful to consider a
specific initial-value problem. Consider the similarity form of C at some given
time τ = T < 0. We are free to specify that at J(ζ0, T ) = 1. Since the particular
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Figure 5: zA−1τγ−1 versus xA−1τγ−1 for the case β = 2, γ = 1
9
(1 +

√
19).

value of γ in the interval (1/2, 1) is immaterial, we set γ = 2/3, µ = 5/3. Then
the last condition gives the parametric equations for α(ζ0) in the form

√

10/3A

T 1/3
ζ0 = G−1/2

√

1 −G3 + 2

∫ 1

G

√

G−3 − 1, (63)

√

10/3A

T 5/3
α = G−5/2

√

1 −G3, (64)

with 0 < G < 1. We show this function in figure 2. Not that for general γ
and β = 2, setting J = 1 at τ = T makes α′(0) = T 2γ .

To see how J varies with τ given this parametrization of C, we may use

( τ

T

)2/3√
J =

g(σ)

g(σ(τ/T )5/3)
, (65)

where g(σ) is defined implicitly by 10
3 A

2σ2g5 + g3 − 1 = 0. From (65) we see
that J tends to 1 as ζ0 → ∞ for any τ < T , but as τ decreases from T the
stretching is concentrated toward the developing singularity.

Another important point concerns the ratio of the square root of the local
curvature and the square root of the local Jacobian of C. In the construction of
the next section, this ratio κ/

√
J , determines the ratio of the typical diameter

of the cocoon divided by the local radius of curvature of the core vortex. With
J initially 1, this ratio is bounded as a function of ζ, as is clear from the
geometry of C, and follows analytically from κ expressed as a function of g. As
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Figure 6: AT−5/3α as a function of AT−1/3ζ0, for the case β = 2, γ = 2/3.

a function of τ for fixed σ, that is, in the developing singular region, we have
κ/

√
J ∼ O(τ2γ−1). Since γ > 1/2, the cocoon diameter is small compared to

the radius as τ → 0, so the cocoon is locally a 2D structure.

4 Concluding remarks

We find that the rate of growth of vorticity in axisymmetric flow without swirl
is well below the exponential bound following directly from the Biot-Savart
law. The most rapid growth to large vorticity is in this case achieved by paired
toroidal vortex structures whose effect can be dominated by the cocoon structure
calculated in this paper. A crucial and much more difficult question concerns
the maximal growth available when the paired, toroidal structures are allowed
to deviate from axial symmetry. Then, global and local energy conservation are
decoupled and then the possibility exists of much more rapid growth locally,
a possibility that has been explored previously [Pumir & Siggia (1987)]. How-
ever dynamical processes associated with energy conservation, especially the
effects of axial pressure gradients and flow could well regularize the flow and
prevent blowup. (A dynamical problem suggested by our kinematic results will
be studied in part II.)

The dynamics of paired structures in axially symmetric flow without swirl is
in itself interesting, perhaps leading to growth far smaller than our estimates,
or even to a bound on vorticity for all time. The fate of a “toroidal Batchelor
couple” presents an especially interesting numerical problem, which might reveal
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an useful asymptotic stage at large times.
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