Fluid Dynamics I PROBLEM SET 8 Due by the last class (December 12).

1. Counsider the uniform slow motion with speed U of a viscous fluid past a spherical bubble of radius
a, filled with air. Do this by modifying the Stokes flow analysis for a rigid sphere as follows. The no slip
condition is to be replaced on r = a by the condition that both w, and the tangential stress o,¢ vanish. (This
latter condition applies since there is no fluid within the bubble to support this stress.) Show in particular
that

v = %(T2 — ar)sin?0

and that the drag on the bubble is D = 47uUa. Note: On page 235 of Batchelor see the analysis for a
bubble filled with a second liquid of viscosity fi. The present problem is for g = 0.

2. Consider two-dimensional Stokes flow past a circular cylinder of radius a. Show that the problem
reduces to the biharmonic equation for the two-dimensional stream function ,
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with conditions 9v/0r = 9¢/90 = 0 on r = a and ¢ ~ Ursinf as r — oco. Seeking a solution of the form
f(r)sin 0, show that this leads to
f=Ar®+ Brlogr+Cr+ D/r

and hence that there is no solution of the required form. This is Stokes’ Paradoz, as discussed in class.

3. Prove that Stokes flow past a given, rigid body is unique, as follows. Show if p;,u; and ps, uy are
two solutions of
Vp—uViu=0,V-u=0,

satisfying u; = —U; on the body and
Ou;
w = O(1/r), 5itp ~ O(/17)

as r — 00, then the two solutions must agree. (Hint: Consider the integral of 0/0z;(w;0w;/0x;) over the
region exterior to the body, where w = u; — us.)

4. Two small spheres of radius a and density ps are falling in a viscous fluid with centers at P and Q.
The line PQ has length L > a and is perpendicular to gravity. Using the Stokeslet approximation to the
Stokes solution past a sphere, and assuming that each sphere sees the unperturbed Stokes flow of the other
sphere, show that the spheres fall with the same speed

U~ U,(1+ ka/L+ O(a*/L?%)),
and determine the number k. Here Us = 2a?g/9v(ps/p — 1) is the settling speed of a single sphere in Stokes
flow.
5. Oseen’s equations are sometimes proposed as a model of the Navier-Stokes, equations, in the study

of steady viscous flow past a body. Oseen’s equations, for a flow with velocity (U, 0,0) at infinity, are

u 1
U Iy —uV2u =0,V u=0.
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(a) For the Oseen model, and for a flat plate aligned with the flow, carry out Prandtl’s simplifications for
deriving the boundary-layer equations in two dimensions, given that the boundary condition of no slip is
retained at the body. That is find the form of the boundary layer on a flat plate of length L aligned with
the flow at infinity, according to Oseen’s model, and show that in the boundary layer the the z-component
of velocity, u, satisfies

ou 0%u

Ur——-v—.

Ox V8y2

What are the boundary conditions on u for the flat-plate problem? Find the solution, by assuming that u is

a function of y\/%, for 0 < < L.

(b) Compute the drag coefficient of the plate (drag divided by pU?L, and remember there are two sides),
in the Oseen model.

6. What are the boundary-layer equations for the boundary-layer on the front portion of a circular
cylinder orf radius a, when the free stream velocity is (—U,0,0) (see figure 1)? (Use cylindrical polar
coordinates). What is the role of the pressure in the problem? Be sure to include the effect of the pressure
as an explicit function in your momentum equation, the latter being determined by the potential flow past
a circular cylinder studied previously. Show that, by defining = af, § = (r — a)v/R in the derivation of the
boundary-layer equations, the equations are equivalent to a boundary layer on a flat plate aligned with the
free stream, in rectangular coordinates, but with pressure a given function of x.

R=Ualv
boundary layer



7. For a cylindrical jet emerging from a hole in a plane wall, we have a problem analogous to the 2D
jet considered in class (see figure 2). Consider only the boundary-layer limit. (a) Show that

9, ., 10 v o Ou,
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) =0,
and hence that the momentum M is a constant, where
o0
M = 27Tp/ ruldr.
0

(b) Letting (u,,u,) = (1/7)(1, —1.) where (0, z) = 0 show that we must have ¥ = zf(n), n = r2/22.
Determine the equation for f and thus show that the boundary-layer limit has the form

n
=4v ,
! 1+ "o

where 79 is a constant. Express no in terms of M, the momentum flux of the jet defined above.
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8. When as one moves downstream within a boundaary layer, the pressure increases, we say that we
have an adverse pressure gradient. With an adverse pressure gradient separation can occur, or else the
boundary layer problem may not have a solution. The latter case is illustrated by the present problem.

Consider the Prandtl boundary-layer equations with U(z) = 1/z, so p(x)/p = peo — 1/(22%). Verify
that the similarity solution has the form ¢ = f(n),n = y/x. Find the equation for f. Show that there is no
continuously differentiable solution of the equation which satisfies f(0) = f/(0) =0 and f' — 1, f” — 0 as
17 — oo. (Hint: Obtain an equation for g = f’.)



