

1. Using the method of Blasius for obtaining moment, as outlined in class, show that the moment of an arbitrary body in 2D potential flow is given by

$$M = -\frac{1}{2} \rho \Re \left[\int_C z (dw/dz)^2 dz \right]$$

where \Re denotes the real part and C is any simple contour about the body. Using this, verify that the circular cylinder flow with vortex of strength Γ at its center experiences zero moment. (Use the residue method.).

2. Consider the Joukowski airfoil with $\zeta_0 = bi$ $a > b > 0$. (a) Show that the airfoil is an arc of the circle with center at $(0, -(a^2 - b^2)i/b)$ and radius $(a^2 + b^2)/b$. (b) With Kutta condition applied to the trailing edge, at what angle of attack (α as a function of b) is the lift zero?

3. Let the airfoil parameters other than chord (i.e. k, β) be independent of y , the coordinate along the span of the wing. Also, assume the planform is symmetric about the line $x = 0$ in the $x - y$ plane. Using Prandtl's lifting-line theory, show that for a given lift the minimal induced drag occurs for a wing having an elliptical planform. Show in this case that the coefficient of induced drag $C_{D_i} = 2 \times \text{drag}/(\rho U^2 S)$ and lift coefficient $C_L = 2 \times \text{lift}/(\rho U^2 S)$ are related by

$$C_{D_i} = C_L^2 / (\pi A).$$

Here S is the wing area and A is the aspect ratio $4b^2/S$. (Some of the WW II fighters, notably the Spitfire, adopted an approximately elliptical wing.)

4. A 3D body D moves steadily with velocity \mathbf{U} . The flow is a potential flow exterior of the body and $\frac{\partial \phi}{\partial n} = 0$ on the body surface ∂D . Given that for large $R^2 = x^2 + y^2 + z^2$ the perturbation potential ϕ ($\mathbf{u} = \nabla \phi - \mathbf{U}$ relative to the moving body) decays like

$$\phi = -\frac{a}{R} - \frac{\mathbf{A} \cdot \mathbf{R}}{R^3} + O(R^{-3}),$$

where a, \mathbf{A} are constants (scalar and vector respectively), show that necessarily $a = 0$. (Note: $\int_{\partial D} \mathbf{n} \cdot \mathbf{U} dS = 0$.)